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Abstract

We introduce a model of dynamic matching with transferable utility, extending

the static model of Shapley and Shubik (1971). Forward-looking agents have

individual states that evolve with current matches. Each period, a matching

market with market-clearing prices takes place. We prove the existence of

an equilibrium with time-varying distributions of agent types and show it is

the solution to a social planner’s problem. We also prove that a stationary

equilibrium exists. We introduce econometric shocks to account for unobserved

heterogeneity in match formation. We propose two algorithms to compute a

stationary equilibrium. We adapt both algorithms for estimation. We estimate

a model of accumulation of job-specific human capital using data on Swedish

engineers.
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1 Introduction

This paper introduces a tractable model of one-to-one, two-sided dynamic matching.

Relationship formation is pervasive in economics, and appears in a wide range of

settings, such as marriage, labor or health care. Matching models are a key class of

analytical tools that predict the formation of relationships. Consequently, they have

become important empirical tools alongside the availability of datasets on formed

relationships. In these models, agents on both sides on the market are paired based

on their observable characteristics, or types. The value generated from a match, usu-

ally referred to as the match surplus, depends critically on the interaction of these

types. This interdependence makes the two sides of the market economic comple-

ments. For instance, on labor markets, where workers match with firms, the match

surplus depends on the worker’s level of human capital and the firm’s productivity.

The surplus created through matching is not equally divided but is instead competi-

tively allocated across agents based on their desirability (how much surplus they can

potentially produce) and their scarcity (the relative number of agents of a given type

present on the market). In the labor market, the share of the surplus obtained by

workers takes the form of wages. The scarcer the workers with high human capital,

the higher their wages.

Importantly, many matching markets are dynamic in that they involve repeated in-

teractions over time. Couples divorce and remarry, workers change jobs, and patients

switch doctors – highlighting the dynamic nature of matching processes in real-world

settings. However, much of the traditional literature, such as the celebrated Becker

model of marriage, models matching at a point in time, treating each period as an in-

dependent market and abstracting away from potential intertemporal linkages. This

overlooks an important feature of dynamic environments: while agents’ current types

drive present matches, those matches, in turn, influence the future evolution of types.

For example, a worker’s human capital evolves as a function of their employment

history, implying that past matches shape future opportunities. Workers know this

and account for this future change in their match decision.

In this paper, we develop a model that explicitly incorporates this dynamic feed-

back into matching games with transferable utility. Agents are forward-looking and

have complete information about their potential partners. They internalize how their

current matching decisions affect the future trajectories of their types. The model
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results in a novel framework that we call repeated matching games. The solution

concept in this model is a dynamic competitive equilibrium, which can be viewed as

an extension of a Walrasian equilibrium to a dynamic setting with complete informa-

tion. Our approach combines the stable matching problem in the tradition of Becker

(1973) and Shapley and Shubik (1971) with Markov decision processes akin to Rust

(1987). Static, transferable utility matching games have productively formed the ba-

sis for many papers that structurally estimate models of relationship formation (e.g.,

Dagsvik, 2000; Choo and Siow, 2006; Chiappori et al., 2017; Dupuy and Galichon,

2014; Fox et al., 2018; Galichon and Salanié, 2022). Our repeated matching game can

similarly be used in structural work. After assuming that observed matches are the

solution to a matching equilibrium and adding appropriate error terms, the model

enables us to structurally estimate underlying preference parameters using observed

data on matches, generalizing the seminal framework by Choo and Siow (2006).

Our repeated matching game operates in discrete time. Each period, there is a set

of active agents. Each agent has a state variable, which is also the type of an agent in

the language of static matching games. Making a match or remaining unmatched can

affect the evolution of this agent state variable or agent type. Each period, there is a

matching market with prices or transfers for different matches. These prices clear the

market. Given these prices, each agent selects the best partner in a forward-looking

manner. Agents have complete information about the state variables’ distributions

over time. In other words, each agent picks a partner today taking into account both

current structural payoffs and transfers as well as how the relationship choice affects

the agent’s own state variable and hence the profitability of possibly all matches in

future periods. Next period the matching market reopens, new prices are stated and

new matches form. Each period should be thought of as long enough for all agents

to consider exiting a current match and choosing a new partner. Frictions such as

switching costs can be included if desired, for example as one explanation for sticky

matches that last multiple periods.

A repeated matching game has both individual and aggregate dynamics. At the

individual level, each agent is solving a single-agent dynamic programming problem,

where at each period the agent’s action is to choose a partner to match with. At

the aggregate level, the aggregate state variable of the matching market is the ac-

tive agents’ current set of types or state variables. This aggregate state variable

evolves with the decisions of the individual agents. We prove that a decentralized
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competitive equilibrium exists, meaning that there exist prices in each period so that

forward-looking workers and firms make profit-maximizing yet feasible matches. We

also prove that the assignment portion of the competitive equilibrium to the decen-

tralized economy satisfies a social planner’s problem, as in static, one-to-one matching

games with transferable utility (Shapley and Shubik, 1971), thereby generalizing an

important characterization of the equilibrium matching in static matching games to

our dynamic setting. Solving the social planner’s dynamic optimization problem ob-

tains the aggregate matching distribution.

Another important theoretical result is that a stationary equilibrium exists: there

is a distribution of individual states such that, after optimal matches are chosen by

forward-looking agents in a decentralized competitive equilibrium, the same distribu-

tion of states occurs next period. The existence of a stationary equilibrium holds for

any admissible parameter vector satisfying the usual finiteness and discounting as-

sumptions and lets the researcher optionally ignore aggregate dynamics by imposing

that the matching game is at a stationary equilibrium.

A repeated matching game can be a useful empirical framework for structural esti-

mation of the production function or match surplus function that is the sum of payoffs

of the workers ans firms for a given match. We introduce a version of the repeated

matching game with econometric errors representing unobserved heterogeneity in the

preferences of agents for partner types. The repeated matching game with econo-

metric errors can best be explained as the combination of two touchstone papers

in the literature. Choo and Siow (2006) proposes an estimator for static matching

games with logit errors. Rust (1987) proposes an estimator for single agent, dynamic

discrete choice models, often using logit errors. In our repeated matching game, an

agent’s discrete choice each period includes whom to match with and faces possibly

logit errors for each type of partner. The agent’s type in the matching game is also

its state variable, as in dynamic discrete choice models. After computing the prices

in a competitive equilibrium, our model of an individual agent’s behavior coincides

with the dynamic discrete choice model in Rust (1987). If we set the discount factors

to zero, a repeated version of Choo and Siow (2006) arises.

For the model with econometric errors, we prove that a decentralized competi-

tive equilibrium with time-varying aggregate states exists and the matching in such

an equilibrium can be computed by a social planner’s dynamic problem. We also

prove that a stationary equilibrium exists, which is important for many empirical
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applications in empirical micro that do not focus on aggregate dynamics.

We introduce and benchmark computational methods to compute both an equilib-

rium for the model with time-varying aggregate states as well as to directly compute a

stationary equilibrium. For both the models with and without econometric errors, we

compute the equilibrium matching for the time-varying aggregate state by solving the

social planner’s Bellman equation for the planner’s value function. We approximate

the value function using function approximation techniques, such as deep learning,

inside value function iteration. Our two algorithms for computing a stationary equi-

librium are more novel. One method, MPEC, solves a system of nonlinear equations

using a nonlinear programming solver. The second method uses a primal-dual algo-

rithm by Chambolle and Pock (2011). Our benchmarks show that both these methods

can scale to problems with many agent types, and the primal-dual algorithm scales

better.

Our Supplementary Material discusses structural estimation using data on matches

and agent states from a stationary equilibrium. Both the MPEC and the primal-dual

algorithms can be extended from equilibrium computation to structural estimation by

adding appropriate terms to the mathematical programs to be solved. We also bench-

mark our two estimators and show that a similar conclusion holds: the primal-dual

algorithm scales better with the number of structural parameters.

In an empirical illustration, we use panel data on Swedish engineers who work

at private-sector employers to estimate match production as a function of worker

and firm types. The engineers’ time-varying states are overall experience as well as

recent experience in, separately, technical and managerial jobs. The two job-specific

measures of human capital accumulate when the worker matches to a job of the

relevant type. We estimate the match production function as a function of these

worker experience variables and the type of the job, technical or managerial.

To our knowledge, there is not a useful off-the-shelf model from the theory lit-

erature that generalizes static matching games such as the ones developed in Gale

(1989); Koopmans and Beckmann (1957); Becker (1973); Shapley and Shubik (1971)

to a dynamic setting. Yet such a generalization is useful to study a wide array of

markets. For instance, entrepreneurs might be generalists who require experience in

several roles before launching their own firms (Lazear, 2009). In supplier/assembler

matching, lower-quality car part suppliers participating in Toyota’s Supplier Devel-

opment Program might raise the quality of future parts (Fox, 2018).
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We use econometric assumptions from the literature on estimating static match-

ing games with a continuum of agents (Choo and Siow, 2006; Chiappori et al., 2017;

Fox, 2018; Galichon and Salanié, 2022). Our individual agent problems are dynamic

discrete choice models (Miller, 1984; Wolpin, 1984; Pakes, 1986; Rust, 1987). More

recently Rosaia (2021) links undiscounted Markov decision processes to static discrete

choice models. In terms of dynamic matching, Choo (2015) derives closed-form for-

mulas for a model where matched agents are exogenously separated from the pool of

agents who can match. By contrast in our models’ equilibrium, agents endogenously

separate based in part on the availability of attractive partners. Erlinger et al. (2015)

and McCann et al. (2015) use two-period models, where in the first period an agent

goes to school and in the second period the agent participates in the labor market.

Peski (2021) also focuses on the evolution of individual agent state variables, in his

case with a dynamic search model where each period each unmatched agent meets

another and accepts or rejects the match. Separations are exogenous and hence unre-

lated to attractive potential partners, unlike our model. Our model with econometric

errors is perhaps mathematically most closely linked to the model of trade in used

cars by Gillingham et al. (2022). Used cars in their model are not forward looking.

By contrast, both sides of the market are forward looking in our approach. Anderson

and Smith (2010) propose a model of dynamic matching where types are fixed, but

reputations evolve according to Bayesian updating. We adopt a different focus, in

that our model captures agents’ anticipation in a change of their own type.

Our model is a strong departure from the large and influential literature on search

models (e.g., Burdett and Mortensen, 1998), in which frictions arise from imperfect

meeting technologies: agents encounter one another randomly rather than being in-

stantaneously matched at no cost. In particular, Shimer and Smith (2000) and Atakan

(2006) combine matching à la Becker with search frictions. As already mentioned,

a special case of our model includes switching costs by defining the agent states to

include previous matches.

Section 2 presents the baseline model of repeated matching games, theoretically

showing the existence of both an equilibrium with time-varying aggregate states and a

stationary equilibrium. Section 3 describes the model with econometric shocks. Sec-

tion 4 presents our methods for equilibrium computation. Section 5 is our empirical

application to Swedish engineers switching employers. Section 6 concludes.
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2 The Baseline Model

2.1 Set Up

Agents match in a one-to-one, two-sided market.1 We refer to one side of the market

as workers and to the other side as firms. Let x ∈ X be the state of the worker,

with the set of worker states X being finite. We also call x the type of the worker,

recognizing the type can change over time. Let y ∈ Y be the firm state, with Y also

finite. A worker with state x can match with any y firm, but the worker also has

the option to remain unmatched, which we denote by 0. The choice set of workers is

therefore Y0 = Y ∪{0} and the choice set of firms is X0 = X ∪{0}.
Our model is one of large numbers of both workers and firms, which we conjecture

is required for results that rely on real numbers, such as the coming result on the

existence of a stationary equilibrium. Therefore, we assume that there is a continuum

of workers and a continuum of firms.

We consider an infinite-horizon model in which periods are discrete and the match-

ing market takes place every period. Workers and firms discount the future at rate

β < 1. Note that the horizon is the horizon for the entire economy, rather than the

horizon for an individual worker or firm, which can be finite by placing worker or

firm age in the state variables. The worker and firm states evolve according to known

transition rules that are functions of the current match (x, y). The conditional prob-

ability mass function for the worker’s next state x′ if at current state x and matched

to state y is

Px′|xy

and the transition rule for firm state y is

Qy′|xy

Not restricting these transition rules further is a key aspect of generality relative to

some prior work.

In the aggregate economy, we keep track of the masses of workers and firms of each

1We conjecture that the results in this paper could be extended to the fairly general case of
trading networks, where an agent can in generality make multiple trades/matches as both a buyer
and a seller simultaneously, as in Hatfield et al. (2013) and in Section 6 of Azevedo and Hatfield
(2018).
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type. Let mt
x be the mass of workers of type x in period t, with mt = (mt

x)x∈X being

the vector of masses for all worker states. Likewise, let nt
y be the mass of firms of

type y, with nt = (nt
y)y∈Y . The aggregate state of the economy in period t is (mt, nt),

which contains the masses of all worker and firm types. Additional macro states, like

demand shifters for the industry being studied, can be added to the aggregate state

with little conceptual difficulty, although we do not pursue that extension. The total

masses of workers and firms M and N remain constant over time, i.e. it must always

be the case that the aggregate state lies in a bounded set L, as in

(mt, nt) ∈ L ≡

{
(m,n) ≥ 0

∣∣∣∣ ∑
x∈X

mx = M,
∑
y∈Y

ny = N

}
∀t.

In a proposed outcome to the model in period t, let µt
xy be the the mass of matches

between workers of state x and firms of state y. Likewise µt
x0 is the mass of workers of

type x who are unmatched and µt
y0 is the mass of vacant firms. Let µt =

(
µt
xy

)
xy∈X0 Y0

be the matrix of masses of matches, where X0 Y0 = {(x, y) | x ∈ X0, y ∈ Y0, (x, y) ̸= (0, 0)}.
In our discussion of estimation in the Supplemental Material, we will have data ran-

domly sampled from µt.

Matched agents exchange monetary transfers in equilibrium. Let wt
xy be the mone-

tary transfer paid by y to x when the two are matched. Agents who remain unmatched

do not receive or pay any transfers. Let wt = (wt
xy)xy∈X Y be the vector of (endoge-

nously determined) wages in period t, which we also refer to as a wage menu. In

estimation, we will not use data on monetary transfers, as using data on matches and

types only has been the most common data scheme for transferable utility matching

games since the early work of Becker (1973) and early structural empirical work by

Choo and Siow (2006).

An outcome to the model has matches µ(m,n) and transfers w(m,n) for all pos-

sible aggregate states (m,n). The aggregate state transitions using the matches and

the individual state transition rules. We use the shorthand notation (Pµ,Qµ) for the

next period’s aggregate state:

(Pµ)x =
∑

x′∈X ,y′∈Y0

Px|x′y′µx′y′ and (Qµ)y =
∑

x′∈X0,y′∈Y

Qy|x′y′µx′y′ .

Aggregate transitions are deterministic, although adding stochasticity at the ag-
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gregate level is conceptually straightforward in our framework. At the individual

level, transitions are stochastic according to the rules P and Q. Individual workers

may gain or lose human capital in various occupations. At the aggregate level, the

total masses M and N and transition probabilities P and Q are exogenously given,

while wages w and matches µ are endogenously determined. At the individual level,

the wage schedule w is taken as exogenous and determines the matching choice. We

describe these mechanisms in the next subsection.

In our empirical application to Swedish engineers, we augment the repeated match-

ing model to include the arrival and departure of workers and jobs in each period in

order to match the data.

2.2 Dynamic Competitive Equilibrium

In this section, we start by describing the matching problem solved by individual

agents. We then define our solution concept for the model, which we call a dynamic

competitive equilibrium.

If a worker of state x matches to a firm of state y in period t, the worker receives

flow profit

αxy + wt
xy,

where αxy is a structural parameter measuring the worker’s non-monetary utility and

wt
xy is the equilibrium wage paid by firm y to worker x. αxy is the same in every

period and it captures amenities perceived by the worker, while wt
xy can change over

time. If the worker is unmatched, he or she does not receive a transfer and we also

assume zero amenities, αx0 = 0.

The wages in period t are wt = (wt
xy)xy, the tuple of wages for all xy pairs. Let

w = (wt)t be the wage schedule, the infinite series of wages. The worker is forward

looking and chooses a partner yt in every period t to maximize his or her expected

present discounted value of lifetime profit, or

E

[
∞∑
t=0

βt
(
αxtyt + wt

xtyt

)
|x0 = x

]
,

where xt is the worker’s state variable in period t ≥ 1 and yt is the firm partner type

picked that period. Wages (wt)t are taken as given by the individual. Because the

individual state transitions are stochastic, future states are random variables. The
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expectation is taken over the future sequence of individual states x. In the next

section, we detail how wages are set in every period depending on the aggregate state

(m,n).

The problem can be analyzed recursively using the workers’ Bellman equation:

U t
x

(
w(t)
)
= max

y∈Y0

{
αxy + wt

xy + β
∑
x′∈X

Px′|xyU
t+1
x′

(
w(t+1)

)}
, (1)

where w(s) = (wt)t≥s. The function U t
x

(
w(t)
)
is the continuation value for a worker

with state variable x choosing from a menu of wages w(t). The sum
∑

x′∈X Px′|xyUx′
(
w(t+1)

)
is the expected continuation value in the next period.

Symmetrically, a firm of type y has flow profit

γxy − wt
xy,

where γxy is the non-transfer portion of profit accruing directly to the firm, its output.

If the firm is unmatched, it pays no wages and has no output, γ0y = 0. The firm’s

Bellman equation is

V t
y

(
w(t)
)
= max

x∈X0

{
γxy − wt

xy + β
∑
y′∈Y

Qy′|xyV
t+1
y′

(
w(t+1)

)}
, (2)

where V t
y

(
w(t)
)
is the continuation value for a firm with state variable y choosing

from a menu of wages w(t).

Given the series of wages w(t), the worker’s and firm’s problems are akin to one-

sided problems. Each worker and each firm is solving a dynamic discrete choice

problem, where the discrete choice is a partner type. In the next section, we specify

how wages adjust to clear the market at the aggregate level and are taken as given by

individual agents. Other discrete choices, like the decision to undertake an explicit

investment to improve a state variable, can be added to the model without changing

its basic mathematical structure.

Example. To illustrate the model, we use the following example later in this section.

Consider two types of workers and two types of firms. The total masses of workers

and firms are 1 each. Worker and firm types are either high, h, or low l. We use the
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vector of amenities:

α = [αll αlh αhl αhh αl0 αh0] = [1 2 2 4 0 0] .

Workers and firms are subject to transition rules P and Q. Matching with a given

type in period t gives agents a high probability to transition to this type themselves

in period t+ 1. Let

P =

[
Pl|ll Pl|lh Pl|hl Pl|hh Pl|l0 Pl|h0

Ph|ll Ph|lh Ph|hl Ph|hh Ph|l0 Ph|h0

]
=

[
.8 .3 .6 .2 .9 .1

.2 .7 .4 .8 .1 .9

]

For simplicity, we set firms’ outputs γ and transitions Q to be the same as workers’

amenities and transitions:

γ = α and Q = P.

As in the static matching game literature such as Shapley and Shubik (1971),

the solution concept for our model is competitive equilibrium, which we refer to as

dynamic competitive equilibrium.

Matching masses are µ = (µt)t, where µt is the tuple
(
(µt

xy)xy, (µ
t
x0)x, (µ

t
0y)y
)
in a

time period t. We say that matching µ is feasible for an aggregate state (m,n) if it

satisfies ∑
y∈Y0

µ0
xy = mx and

∑
x∈X0

µ0
xy = ny (3)∑

x′∈X ,y′∈Y0

Px|x′y′µ
t
x′y′ =

∑
y∈Y0

µt+1
xy and

∑
x′∈X0,y′∈Y

Qy|x′y′µ
t
x′y′ =

∑
x∈X0

µt+1
xy .

The first two equations ensure that µ0 sums to the initial aggregate masses m and

n. The last two impose that µt+1 sums to the aggregate masses in t+ 1 since∑
x′∈X ,y′∈Y0

Px|x′y′µ
t
x′y′ = mt+1

x and
∑

x′∈X0,y′∈Y

Qy|x′y′µ
t
x′y′ = nt+1

y .

In the following Definition 1, (µ,w) is a tuple of matches and wages.

Definition 1. (µ,w) is a dynamic competitive equilibrium (DCE) if it is feasible for

all (m,n) ∈ L and for all x̄ ∈ X , ȳ ∈ Y , a positive matching mass µt
x̄ȳ > 0 in period t
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implies the match between worker x̄ and firm ȳ maximizes both agents’ profits as in

µt
x̄ȳ > 0 ⇒

{
ȳ ∈ argmaxy∈Y0

αx̄y + wt
x̄y + β

∑
x′∈X Px′|x̄yU

t+1
x′

(
w(t+1)

)
x̄ ∈ argmaxx∈X0

γxȳ − wt
xȳ + β

∑
y′∈Y Qy′|xȳV

t+1
y′

(
w(t+1)

) , (4)

where U t+1 and V t+1 are the agents’ continuation values given w, as defined in (1)

and (2).

In a DCE, each agent is maximizing its expected, present-discounted sum of prof-

its.

2.3 The Social Planner Problem

Solving for the decentralized dynamic competitive equilibrium using Definition 1

presents significant challenges, as it requires computing agents’ continuation values

on the entire space of possible wage menus. Instead of directly computing the de-

centralized equilibrium, we extend a key result from static matching games to our

repeated matching game. We consider a social planner’s problem, show the existence

of a solution, and show that the solution is also the matching portion of a decen-

tralized dynamic competitive equilibrium. Therefore, we prove the equivalent of the

social planner’s property in the static model of Shapley and Shubik (1971) for our

dynamic model. If we set the discount factor β to be zero for both workers and firms,

the static social planner result of Shapley and Shubik would apply to each period

separately.

Static matching games with transferable utility often highlight the importance of

the total flow surplus or production of a match:

Φxy = αxy + γxy.

We will also focus on the match production.

Given an initial aggregate state (m,n), the social planner’s problem is to maximize

the present discounted value of economywide profits W (m,n):

W (m,n) = max
µt≥0

{
∞∑
t=0

βt
∑

xy∈X0 ×Y0

µt
xyΦxy

}
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s.t
∑
y∈Y0

µ0
xy = mx and

∑
x∈X0

µ0
xy = ny (5)∑

x′∈X ,y′∈Y0

Px|x′y′µ
t
x′y′ =

∑
y∈Y0

µt+1
xy and

∑
x′∈X0,y′∈Y

Qy|x′y′µ
t
x′y′ =

∑
x∈X0

µt+1
xy .

The constraints are the same as the feasibility constraints (3).

The primal problem can be analyzed recursively using the social planner’s Bellman

equation

W (m,n) = max
µ∈M(m,n)

{ ∑
xy∈X0 Y0

µxyΦxy + βW (Pµ,Qµ)

}
, (6)

where X0 Y0 = {x ∈ X0, y ∈ Y0 | (x, y) ̸= (0, 0)} and M(m,n) is the set of matchings

that satisfy the feasibility constraints

M(m,n) =

{
(µxy)xy∈X0 Y0 ≥ 0

∣∣∣∣ ∑
y∈Y0

µxy = mx,
∑
x∈X0

µxy = ny

}
.

The present discounted value of economy-wide profits W : L → R is a function from

the space of aggregate states L =

{
(m,n) ≥ 0

∣∣∣∣ ∑x∈X mx = M,
∑

y∈Y ny = N

}
to R.

The notation W (Pµ,Qµ) is shorthand for evaluating the next period’s continuation

value by applying the worker and firm transition rules, P and Q, to the match masses

in the tuple µ.

2.3.1 Solving the Social Planner Problem

We will show that the recursive formulation lets us prove that a unique present

discounted value for economywide profit for each aggregate state (m,n) exists across

all equilibria.

The social planner problem is a dynamic program with continuous states (m,n)

and continuous controls µ. Therefore, the social planner problem fits into classic

reference works on such single-agent dynamic programs, such as Stokey et al. (1989).

Proposition 1. There is a unique functionW : L → R that is solution to equation (6)

and it is continuous, bounded, concave, and defined on the entire set L.

Sketch of proof. The proof is in the Supplemental Material, Section S.1.2. It builds

on similar results in Stokey et al. (1989).
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A useful corollary of Proposition 1 is that an optimal matching policy µ(m,n)

exists for any aggregate state in L but is not necessarily unique.

Corollary 1. Given the aggregate state (m,n), an optimal matching policy µ(m,n)

exists.

Proof. Existence of an optimal policy derives from the theorems cited in the propo-

sition’s proof.

2.3.2 Using the Social Planner Problem to Solve for the DCE

Solving for the social planner’s optimal policy yields a optimal matching policy. We

now show that this optimal matching policy is also compatible with a decentralized

competitive equilibrium, in two steps. First we derive the dual of the social planner’s

problem, which allows the calculation of optimal monetary transfers. Second, we show

that the optimal matching policy and the optimal monetary transfers obtained in the

social planner’s primal and dual problems are together a decentralized competitive

equilibrium (µ,w).

We define the social planner’s cost minimization problem at aggregate state (m,n)

min
Ut,V t

{∑
x∈X

mxU
0
x +

∑
y∈Y

nyV
0
y

}
subject to

U t
x + V t

y ≥ Φxy + β
∑
x′∈X

Px′|xyU
t+1
x′ + β

∑
y′∈Y

Qy′|xyV
t+1
y′ ∀t ≥ 0, x ∈ X , y ∈ Y

U t
x ≥ β

∑
x′∈X

Px′|x0U
t+1
x′ ∀t, x ∈ X

V t
y ≥ β

∑
y′∈Y

Qy′|0yV
t+1
y′ ∀t, y ∈ Y .

Proposition 2. The social planner’s cost minimization problem is the dual of the

primal problem and strong duality holds, so that the value of the dual objective at

a solution is the same as the value of the primal problem’s objective at a solution to

that problem, W (m,n).

Sketch of proof. The primal problem is a linear program with a countable number

of controls in the objective function and a countable number of constraints. The
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paper Romeijn and Smith (1998) provides a formulation of the dual and sufficient

conditions for strong duality in such countable linear programs. The complete proof

is in Appendix A.1.1.

Strong duality holding is critical for standard equilibrium properties such as the

coming existence of a competitive equilibrium. Strong duality holds in our model in

part because of time discounting. Strong duality in linear and nonlinear programs

with countably infinite controls and constraints is a non-trivial extension over results

for finite programs and is still an active area of research in mathematics, as many

problems with countably infinite controls that we do not study actually do not satisfy

strong duality. While the references in mathematics that we cite in proofs do not

explicitly state what further properties hold once strong duality is established, the

news is good. For example and just like in the finite controls case, it is simple to

show that strong duality holding implies that the Lagrange multipliers of the primal

problem constraints are the solutions to the dual problem.

Given an aggregate state (m,n), the social planner’s problem admits at least an

optimal policy µ∗(m,n) and its associated Lagrange multipliers (U∗(m,n), V ∗(m,n)).

The next period’s aggregate state is (m′, n′) = (Pµ∗(m,n), Qµ∗(m,n)), for which

there is once again an optimal policy µ∗(m′, n′) and Lagrange multipliers (U∗(m′, n′), V ∗(m′, n′)).

Applying the optimal policy successively, starting from (m0, n0) = (m,n) and such

that (mt+1, nt+1) = (Pµ∗(mt, nt), Qµ∗(mt, nt)), yields an infinite series of optimal

matchings (µt)t and Lagrange multipliers (U t, V t)t. These are the solutions to the

infinite horizon formulations of the social planners’ primal and dual. In Theorem 1,

we show how to use these series to obtain a dynamic competitive equilibrium (DCE).

Theorem 1. Let (µt)t and (U t, V t)t be the series of optimal matchings and Lagrange

multipliers that solve the social planner problem for the series of aggregate states

(mt, nt)t. Define transfers w = (wt)t that satisfy

−V t
y + γxy + β

∑
y′∈Y

Qy′|xyV
t+1
y′ ≤ wt

xy

≤ U t
x − αxy − β

∑
x′∈X

Px′|xyU
t+1
x′ ∀x ∈ X , y ∈ Y

(7)

Then the tuple (µ,w) is a dynamic competitive equilibrium. Conversely, let (µ,w) be

a DCE and let (U t, V t)t be the associated continuation values as given in definition 1.
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Then (µt)t and (U t, V t)t solve the social planner problem.

The proof of Theorem 1 is in appendix A.1.2. Note that if µt
xy > 0, then the

upper bound of wt
xy coincides with the lower bound, so in this case, the value of w is

unambiguously defined.

The social planner’s optimal matching policy µ given aggregate state (m,n) is

therefore part of a dynamic competitive equilibrium at time t when the aggregate

state is (mt, nt) = (m,n). Note that the social planner problem gives us a practical

way of finding a dynamic competitive equilibrium. Once we have solved for W by

value function iteration, we need only solve the primal for a given aggregate state to

obtain a matching policy that is part of a dynamic competitive equilibrium. We refer

to such a policy as µ(m,n).

The dynamic competitive equilibrium on the space of aggregate states L depends

only on the model parameters: M, N, α, γ, P, Q and β. Typically, the aggregate

state (m,n) varies from period to period. The time series (mt, nt)t is deterministic

given a starting value (m0, n0) for the aggregate state, with the transition rule de-

termined by the optimal matching policy: (mt+1, nt+1) = (Pµ(mt, nt), Qµ(mt, nt)).

In the next section, we show that there exists a constant aggregate state such that

(mt+1, nt+1) = (mt, nt).

Example. Let us return to our earlier example. Choose β = 0.95. Given the values

of β, α, γ, P and Q that we described previously, we can solve for the social planner’s

function W (see Section 4 for more details on how we solve for W numerically). Once

we have computed W , we can compute the dynamic competitive equilibrium for all

aggregate states (m,n) ∈ L.

To illustrate, let us choose three different aggregate states at time t = 0:

(m1, n1) = (.05, .95, .05, .95) (m2, n2) = (.95, .05, .95, .05) (m3, n3) = (.5, .5, .5, .5).

For each of (m1, n1), (m2, n2) and (m3, n3) we can solve for the optimal matching

policy and wage: (µ1, w1), (µ2, w2) and (µ3, w3). Given these, we obtain three different

next-period aggregate states, for which we can again solve for the optimal policy, and

so forth for future periods. The left pane of Figure 1 plots the evolution of the

aggregate state of low-type workers l over 15 periods in the model, starting from each

of the three aggregate states m1
l , m

2
l , and m3

l . All three time series converge to the
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same constant aggregate state (.46, .54). We discuss constant aggregate states in the

next subsection.

At the aggregate level, the aggregate state is a deterministic time series, as shown

in the left pane of Figure 1. However, at the individual level, the state variable that

the agent reaches next period is stochastic, because of the transition rules P and

Q. Consider an initially low-type worker in a world where (m3, n3) is the starting

aggregate state. The right pane of Figure 1 illustrates three paths the worker can

take over time. Many more paths are possible, because the next period’s state for

each worker is random, as it depends on the current match and the transition rules.

Figure 1: Workers’ Aggregate State Evolution (left) and Individual Worker’s Possible
State Variable Paths (right)

2.4 Constant Aggregate State

An aggregate state is constant if it remains the same next period. The matching

policy associated to this aggregate state is then stationary.

Definition 2. A constant aggregate state is an aggregate state (m,n) such that

there exists a matching µ solution to (6) given (m,n) that satisfies the stationarity

conditions
mx =

∑
y∈Y0

µxy =
∑

x′∈X ,y′∈Y0

Px|x′y′µx′y′ ∀x ∈ X

ny =
∑
x∈X 0

µxy =
∑

x′∈X 0,y′∈Y

Qy|x′y′µx′y′ ∀y ∈ Y .
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The constant aggregate state in Definition 2 is such that there is a matching that

solves the social planner problem that results in the same aggregate state next period.

We refer to the matching policy and wages schedule (µ,w) at a constant aggregate

state (m,n) as a stationary equilibrium. Note that the dynamic competitive equilib-

rium is defined at every aggregate state (m,n) ∈ L while the stationary equilibrium

is only defined at a constant aggregate state.

We show the existence of a constant aggregate state in Theorem 2.2

Theorem 2. A constant aggregate state exists.

Sketch of proof. We rely on Proposition 1 to show that the set-valued function that

yields the next-period aggregate states (m′, n′) given (m,n) satisfies the conditions

of Kakutani’s theorem and as such admits a fixed point. The complete proof is in

Appendix A.1.3.

Note that it is straightforward to have individual workers and firms with finite

horizons, even when the economy has a finite horizon: one can adapt the transition

rules to include absorbing states that effectively end the game for workers or firms.

However, introducing a finite horizon to the entire economy changes how one solves

the primal problem: It can be solved by backward induction. It is unlikely that there

is a constant aggregate state in the finite-horizon problem.

3 Model with Econometric Errors

In the previous section, we defined a dynamic competitive equilibrium in our model

and showed that such a equilibrium could be computed by solving a social planner

problem. Finally we demonstrated that a constant aggregate state existed. In this

section, we introduce econometric shocks to our model and show that the same results

hold.

3.1 Specification

The previous model often predicts that some matches never occur, meaning µxy = 0

for some types x and y. This contradicts available datasets where, with enough

2In some cases a constant aggregate state will put all mass at the boundary of the state space.
For example, if workers are infinitely lived and accumulate experience deterministically and mono-
tonically, the constant aggregate state will involve all workers having the upper bound on experience.
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observations, it is the case that µxy is rarely or never zero. This contradiction is

solved by including random utility terms in the flow profits of both workers and

firms. These random utility terms matter for match formation but are unobserved to

the econometrician. They can also be called econometric errors, preference shocks,

preference heterogeneity, or unobserved state variables.

Let the per period flow profit for worker i of type x matched with a type y firm

be

uxy + ϵiy = αxy + wxy + ϵiy,

where ϵiy is worker i’s preference shock for type y partners. Worker i is indifferent

between all partners of the same observed type y. The flow profit from being un-

matched is αx0 + ϵi0. Let the flow profit for a firm j of type y matched with a worker

of type x be

vxy + ηxj = γxy − wxy + ηxj,

where ηxj is firm j’s preference for workers of type x. The flow profit to a firm for

being unmatched is γxy + ηj0.

When we turn to estimation in a later section, the econometrician only knows the

distribution of the econometric errors, but not their realizations. We make similar

assumptions to Choo and Siow (2006) for static matching games and Rust (1987) for

single-agent dynamic discrete choice models.

Assumption 1. The econometric errors satisfy the following assumptions:

1. The distribution of the random vector (ϵiy)y∈Y0
, where i is randomly drawn

within workers of type x, is Lϵ|x in every period t. The distribution of the

random vector (ηjx)x∈X0
given individual firm j drawn within firms of type y

is Lη|y in every period t. The vectors (ϵiy)y∈Y0
and (ηjx)x∈X0

have finite first

moments for all y and x.

2. For a single worker i in the two time periods t and t+1 with measured states xt
i

and xt+1
i , the distribution of

(
ϵt+1
iy

)
y∈Y0

satisfies the following conditional inde-

pendence property: L
((

ϵt+1
iy

)
y∈Y0

∣∣∣xt
i, x

t+1
i ,

(
ϵtiy
)
y∈Y0

)
= L

((
ϵt+1
iy

)
y∈Y0

∣∣xt+1
i

)
.

A similar conditional independence assumption holds for firms.

Under our model with a large number of agents, agents have no market power

and therefore it is irrelevant whether these econometric errors are public or private
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information to the market participants. Also, Part 2 of the assumption states that

preferences are drawn anew each time period conditional on measured states x or

y, rather than being possibly correlated over time. Considering identification and

estimation with unmeasured states that are persistent over time is left to future

work.

To ensure the existence of economy-wide profits in the setting with econometric

shocks, we also make the following assumption.

Assumption 2. ∀x ∈ X , y ∈ Y , the distributions Lϵ|x and Lη|y have full support and

are absolutely continuous with respect to the Lebesgue measure.

Unmeasured preferences in the literature on estimating static matching games

with a small number of matching markets, each with a continuum of agents, are

typically preferences over measured partner types x or y rather than unmeasured

preferences attributes (Choo and Siow, 2006; Dupuy and Galichon, 2014; Chiappori

et al., 2017; Fox, 2018; Galichon and Salanié, 2022). This contrasts with a data scheme

of many smaller markets, where agents could have preferences over unmeasured (in

data) attributes of partners (Fox et al., 2018).

To ensure that no masses in the constant aggregate state are 0, we also require that

all state variables are visited from one period to the next. This assumption ensures

the social planner problem with econometric shocks is well defined (see Lemma 3

below).

Assumption 3. For all x ∈ X there exists (x, y) such that Px′|xy > 0. For all y ∈ Y
there exists (x, y) such that Qy′|xy > 0.

3.2 The Dynamic Competitive Equilibrium with Preference

Shocks

3.2.1 General Econometric Shocks

In the model with econometric preference shocks, the worker and firm Bellman equa-

tions are changed to make the preference shock realization part of the current period’s
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state variable for each agent:

U t
x

(
w(t), ϵt

)
= max

y∈Y0

{
αxy + wt

xy + ϵty + β
∑
x′∈X

Px′|xiyE
[
U t+1
x′

(
w(t+1), ϵt+1

)]}

V t
y

(
w(t), ηt

)
= max

x∈X0

{
γxy − wt

xy + ηtx + β
∑
y′∈Y

Qy′|xyE
[
V t+1
y′

(
w(t+1), ηt+1

)]}, (8)

where ϵy and ηx are the realized econometric shocks, and the expected values in U t+1
x

and V t+1
y are taken with respect to the distributions of next period’s econometric

shocks ϵt+1 and ηt+1.

With the worker and firm value functions, we can adapt the notion of a dynamic

competitive equilibrium (DCE) from Section A.1 to the model with unobserved het-

erogeneity. It is computationally attractive to work with aggregates over the real-

izations of the unobserved heterogeneity terms ϵx and ηy. A dynamic competitive

equilibrium (DCE) is defined as follows.

Definition 3. In the framework with econometric errors, the tuple (µ,w) is a dynamic

competitive equilibrium (DCE) if µt corresponds to the probability that each x̃ is

optimal for each ỹ and conversely, given the wage schedule w. That is

µt
x̃ỹ∑

y∈Y0
µt
x̃y

= Pr
(
ỹ ∈ argmaxy∈Y0

αx̃y + wt
x̃y + ϵty

+ β
∑

x′∈X Px′|x̃yE
[
U t+1
x′

(
w(t+1), ϵt+1

)])
µt
x̃ỹ∑

x∈X0
µt
xỹ

= Pr
(
x̃ ∈ argmaxx∈X0

γxỹ − wt
xỹ + ηtx

+ β
∑

y′∈Y Qy′j |xỹE
[
V t+1
y′

(
w(t+1), ηt+1

)])
,

(9)

where the expected values are taken over future draws of preference shocks ϵt+1 and

ηt+1.

As in the case with no econometric shocks, we will use the social planner’s problem

to compute a DCE. In the case with econometric shocks the social planner problem

is said to be regularized, meaning that the objective function contains an additional

term that accounts for the econometric shocks. A key role is played by the so-called

general entropy function that quantifies the effect of the econometric shocks. The

generalized entropy is defined in the following steps. First, introduce the expected
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indirect payoff functionsGx andHy given the distributions for the econometric shocks:

Gx(u) = E
[
max
y∈Y0

{uxy + ϵy}
]

and Hy(v) = E
[
max
x∈X0

{vxy + ηx}
]
,

where Assumption 2 ensure the max is well defined. Their population counterparts

G and H are

G(u,m) =
∑
x∈X

mxGx(u) and H(v, n) =
∑
y∈Y

nyHy(v).

The total expected indirect payoffs let us express the generalized entropy as:

E(µ) =
∑
x∈X

∑
y∈Y0

µxyG
∗
x

(
µx.∑

y∈Y0
µxy

)
+
∑
y∈Y

∑
x∈X 0

µxyH
∗
y

(
µ.y∑

x∈X 0
µxy

)
,

where µx. = (µxy)y∈Y0
, µ.y = (µxy)x∈X0

, and G∗ and H∗ are the Fenchel-Legendre

transforms of G and H (Galichon and Salanié, 2022). Our initial requirement that

all state variables are visited from one period to the next ensures that
∑

y∈Y0
µt
xy > 0

and
∑

x∈X 0
µt
xy > 0, so that E is defined at every time period t. Introduce M as the

set of µ ≥ 0 such that µ such that
∑

xy∈X 0 Y µxy = M and
∑

xy∈X Y0
µxy = N . The

set M is a closed set, whose interior is the set of vectors µ such that µxy > 0 for all

xy ∈ (X0 × Y) ∪ (X × Y0). The transforms G∗ and H∗ are not defined outside of

the interior of M. When some of the µxy = 0, the following lemma shows that the

generalized entropy is bounded on the interior of M.

Lemma 3. The function E is defined, continuous, and bounded on the interior of M.

The proof is in the Supplemental Material, Section S.2.1, and rests on Assumptions

1, 2 and 3. As a result, the function E can be extended by continuity to the entire

set M, and in the sequel we will denote by the same notation E that extension.

Consider a social planner starting at the aggregate state (m,n). The generalized

entropy function E as defined us allows to write down the social planner’s primal prob-

lem with econometric errors as the maximization of the expected, present-discounted

sum of economywide production under the chosen matching policy, minus the gener-
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alized entropy penalty function E :

max
µt
xy≥0

{
∞∑
t=0

βt

( ∑
x,y∈X0Y0

µt
xyΦxy − E

(
µt
))}

, (10)

subject to the same feasibility constraints and transition rules as in the model without

preference shocks, ∑
y∈Y0

µ0
xy = mx and

∑
x∈X0

µ0
xy = ny, (11)

∑
x′∈X ,y′∈Y0

Px|x′y′µ
t
x′y′ =

∑
y∈Y0

µt+1
xy and

∑
x′∈X0,y′∈Y

Qy|x′y′µ
t
x′y′ =

∑
x∈X0

µt+1
xy . (12)

The regularized social planner’s Bellman equation is

W (m,n) = max
µ∈M(m,n)

{ ∑
xy∈X0 Y0

µxyΦxy − E(µ) + βW (Pµ,Qµ)

}
. (13)

The solution W (m,n) is unique.

Proposition 3. There exists a unique function W : L → R that satisfies (13). It is

defined on the entire set L, continuous, bounded and strictly concave.

The proof, which is included in the Supplemental Material, Section S.2.2 for com-

pleteness, uses the same reasoning as for Proposition 1.

Corollary 2. The optimal matching policy µ that solves the social planner problem

(13) exists and is unique.

Proof. The function µ →
∑

xy∈X0 Y0
µxyΦxy − E(µ) + βW (Pµ,Qµ) is continuous and

strictly concave. We are maximizing on the compact set M(m,n). Therefore, there

exists a unique maximum to the regularized social planner problem.

It is precisely the nonlinear entropy term E(µ) that makes the social planner’s

problem strictly concave, ensuring that the social planner’s problem has a unique

solution.

The social planner’s problem is a nonlinear program with countably infinite con-

trols and constraints. Mathematical knowledge about this class of problems has
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recently been growing. We are able to use the recent literature to establish that

strong duality holds for the relationship between the social planner’s primal problem

and an appropriate dual. The dual that we will derive in the proof of the following

proposition is

inf
ut,vt

∑
x∈X

m0
xGx(u

0) +
∑
y∈Y

n0
yHy(v

0)

s.t ut
xy + vtxy = Φxy + β

(
P⊤G(ut+1) +Q⊤H(vt+1)

)
xy

ut
x0 = Φx0 + β

(
P⊤G(ut+1

)
x0

vt0y = Φ0y + β
(
Q⊤H(vt+1)

)
0y

(14)

where G(ut+1) and H(vt+1) are the stacked vectors of (Gx(u
t+1))x and (Hy(v

t+1))y.

Proposition 4. The social planner’s primal problem (10) is dual to problem (S.2).

Both problems have optimal solutions and strong duality holds, i.e. their value coin-

cide.

The proof is in the Supplemental Material, Section S.2.3, and is the lengthiest in

this paper. The key paper Luc and Volle (2021) that the proof uses actually shows a

weak notion of strong duality and some effort in the proof is spent building on that

work to show a stronger notion of strong duality. Establishing strong duality means

that many of the key results from nonlinear programs with a finite number of controls

and constraints immediately extend to our nonlinear programs with countably infinite

numbers of controls and constraints.

As in the model without econometric errors, solving the social planner problem

with entropy is the same as solving for the matching that is part of a decentralized

dynamic competitive equilibrium.

Theorem 4. Let (µt)t and (ut, vt)t be the series of optimal match masses and La-

grange multipliers that solve the social planner problem for the series of aggregate

states (mt, nt)t. Define transfers w = (wt)t that satisfy

wt
xy = ut

xy − αxy − β
(
P⊤Gx(u

t+1)
)
xy

= −vtxy + γxy + β
(
Q⊤Hy(v

t+1)
)
xy
.

(15)

Then the tuple (µ,w) is a dynamic competitive equilibrium, DCE. Conversely, let

(µ,w) be a DCE and let (U t, V t)t be the associated continuation values. Then (µt)t
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and (U t, V t)t solve the social planner problems.

The proof is in the Supplemental Material, Section S.2.4. The proof rests on the

use of the strong duality shown in Proposition 4.

3.2.2 The Logit Case

In order to express the competitive matching policy in closed form, we now assume a

particular, well-known distribution for the econometric errors, following the literature,

and in particular Choo and Siow (2006) and Rust (1987).

Assumption 4. The econometric errors ϵ and η have the type one extreme value

(also called the Gumbel) distribution.

Under Assumption 4, the indirect payoffs have the logit form (see Galichon and

Salanié (2022) for derivations):

Gx(u) = log
∑
y∈Y0

exp(uxy) and Hy(v) = log
∑
x∈X0

exp(vxy).

Also, the entropy E penalty term under logit errors is

E(µ) =
∑

xy∈X Y0

µxy log
µxy∑

y∈Y0
µxy

+
∑

xy∈Y X0

µxy log
µxy∑

x∈X 0
µxy

.

Given the logit set up, we can compute certain equations that hold in equilibrium.

These are not solutions to the social planner’s Bellman equation (13), but more a

reformulation of Bellman’s equation given the logit errors, as the terms depend on

the expected, present-discounted profits Ux and Vy, which are themselves equilibrium

objects.

Proposition 5. Under Assumption 4, the dynamic competitive equilibrium matching

µt in any given period t where the aggregate state is (mt, nt) satisfies for all x ∈ X
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and y ∈ Y

µt
xy =

√
mt

xn
t
y exp

(
Φxy + β

∑
x′∈X U t+1

x′ Px′|xy + β
∑

y′∈Y V t+1
y′ Qy′|xy − U t

x − V t
y

2

)

µt
x0 = mt

x exp

(
β
∑
x′∈X

U t+1
x′ Px′|x0 − U t

x

)

µt
0y = nt

y exp

(
β
∑
y′∈Y

V t+1
y′ Qy′|0y − V t

y

)

where U t, V t are the Lagrange multipliers on constraints (11), (12).

Proof. The equilibrium matches arise from calculating the first order conditions of

the social planner’s primal problem (10). The calculations are omitted for space

reasons.

We use Proposition 5 in our empirical application in Section 5 where we assume

a logit set up when econometric shocks are present.

3.3 The Constant Aggregate State with Econometric Errors

We define a constant aggregate state and a stationary equilibrium as in the setting

without econometric shocks (Definition 2). We can also show that a constant aggre-

gate state exists in the setting with shocks. The proof uses a different fixed point

theorem than the corresponding proof for the model without econometric errors.

Theorem 5. A constant aggregate state exists in the model with general econometric

errors.

Sketch of proof. We rely on Brouwer’s fixed point theorem. The complete proof is in

Appendix A.2.1.

4 Methods for Equilibrium Computation

This section develops methods for computing dynamic competitive equilibria, mean-

ing equilibria with aggregate dynamics, and stationary equilibria, meaning equilibria

with a constant aggregate state. We develop algorithms for both the models without

and with econometric shocks.
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In the non-stationary environment, we are solving a single-agent dynamic pro-

gramming problem for the social planner and rely on value function iteration, making

use of the social planner Bellman equations (6) and (13), as detailed in Section 4.1.

Computing a stationary equilibrium is less computationally intensive since we

only need to compute an optimal matching policy for the constant aggregate state,

which we solve for. In the Supplemental Material, Section S.3.1, we show that the

constant aggregate state without econometric errors can be computed using quadratic

optimization. Section 4.1 focuses on the aggregate dynamics with econometric errors,

and Section 4.2 leverages two strategies to solve for the constant aggregate state with

econometric errors. The first strategy uses the Mathematical Programming with

Equilibrium Constraint (MPEC) formulation of our problem (Su and Judd, 2012).

The second strategy reformulates the stationary equilibrium equations as a min-max

problem and solves it using techniques from convex optimization (Chambolle and

Pock, 2011).

Both algorithms for computing a stationary equilibrium for the model with econo-

metric errors are easy to adapt to estimating the model’s structural parameters using

data on matches from a stationary equilibrium. We discuss structural estimation in

the Supplemental Material, Section S.4.

4.1 Aggregate Dynamics

The social planner’s Bellman equations with and without econometric errors (6) and

(13) are Bellman equations from a single-agent dynamic programming problem. Such

problems are most classically solved using value function iteration, exploiting the

property that the right side of the Bellman equation is a contraction. In what fol-

lows, we explore value function iteration in the model with econometric errors, but

most details around using value function iteration also apply to the model without

econometric errors.

The state for the social planner’s problem is (m,n), the vector of the masses of

each worker type and each firm type. Dynamic programming methods of all sorts

suffer from a curse of dimensionality in the number of continuous state variables,

which for the non-stationary case is equal to the number of worker plus the number

of firm types.

Value function iteration operates on a grid ((mg, ng))g∈{1,...,G} of nodes, where each
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node is an aggregate state and G is the chosen number of points in the grid. The

k + 1 iteration of value function iteration is

W k+1(mg, ng) = TW k(mg, ng)

where TW (m,n) = maxµ∈M(m,n)

{∑
xy∈X0 Y0

Φxyµxy + βW (Pµ,Qµ)− E(µ)
}

in the

model with econometric errors.

Because the map T is a contraction,
(
W k
)
k
eventually converges to the fixed point

of the social planner’s Bellman equation (13). Once the social planner’s W is known,

the matches µ (mg, ng) can be computed as the optimal policy of the social planner

given W at every node g. Note that because (Pµ,Qµ) does not necessarily land

on a point of the grid ((mg, ng))g∈{1,...,G}, some interpolation technique is needed to

compute the value of W (Pµ,Qµ) at this point. Both polynomials and deep nets can

be used as approximation schemes.

Each iteration of value function iteration has a computational cost that is propor-

tional to the size G of the grid ((mg, ng))g∈{1,...,G}. We can parallelize each iteration

across nodes. Additionally, for each node (mg, ng) and at each iteration, the contin-

uous optimization problem over match masses µxy must be calculated. We use the

NLOPT solver, which can be called from a wide array of programming languages,

and find that the maximization on each point of the grid is solved quickly.3

The numerical analysis literature provides a wide array of methods to accelerate

fixed-point iterations (Fang and Saad, 2009; Walker and Ni, 2011). Our implemen-

tation uses the Anderson acceleration method. Its main idea is to use not only W k

to update to W k+1, but also the values from the previous iterations W k−1, W k−2, ...

up to some threshold decided by the analyst. With an aggregate state of dimension

2× 2, we run a value function iteration on the [.01, 1]2 × [.01, 1]2 grid in 32 minutes.4

3The algorithm we call through NLOPT is the sequential least-square quadratic programming
algorithm (Johnson (2007), Kraft (1994)).

4Ran in Julia on 4 threads, on a M2 chip Macbook Pro.
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4.2 Constant Aggregate State

We assume a logit set up, so that the optimal policy µ has a closed-form solution, as

described in Proposition 5. Let

µ(U, V, U ′V ′,m, n) = (µxy(U, V, U
′V ′,m, n),

µx0(U, V, U
′V ′,m, n), µ0y(U, V, U

′V ′,m, n))x,y∈X Y

be the function that returns the closed form expressions in Proposition 5, where the

first two arguments are the current period payoffs, and the next two are the next

period payoffs.5 We present two numerical methods to compute a constant aggregate

state and its associated stationary equilibrium in the model with econometric errors.

4.2.1 Mathematical Programming with Equilibrium Constraints

Mathematical Programming with Equilibrium Constraints, or MPEC, has been used

by Su and Judd (2012) to estimate the single-agent dynamic discrete choice model of

Rust (1987) and by Dubé et al. (2012) to estimate the aggregate demand model of

Berry et al. (1995). MPEC formulates the model as a set of constraints and solves

the set using nonlinear programming.

Instead of solving for optimal matching policy µ at each iteration on W , as is

done in value function iteration, MPEC focuses on the control variables (m,n, U, V )

in the search for a constant aggregate state. The primitives (m,n, U, V ) have to

satisfy a number of constraints: the feasibility conditions and stationary transition

rules outlined previously.6 The constraints are:

Feasibility

{ ∑
y∈Y0

µxy(U, V, U, V,m, n) = mx ∀x ∈ X∑
x∈X0

µxy(U, V, U, V,m, n) = ny ∀y ∈ Y

Stationary Transitions

{ ∑
xy∈X0 Y Px′|xyµxy(U, V, U, V,m, n) = mx′ ∀x′ ∈ X∑
xy∈X Y0

Qy′|xyµxy(U, V, U, V,m, n) = ny′ ∀y′ ∈ Y .

(16)

To solve the system of equations (16), we use a nonlinear solver to maximize a

5These correspond to (U t, V t) and (U t+1, V t+1) in Proposition 5, respectively.
6The optimal matching policy should also sum to the total masses on each side of the market:∑
xy∈X Y0

µxy(U, V,m, n) = M and
∑

xy∈X0 Y µxy(U, V,m, n) = N . Because the logit formulas are
homogenous of degree 1/2 in (m,n), these two conditions are straightforward to satisfy by adding a
constant to U and V .
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constant function (say 0) subject to the constraints (16). The problem definition

language JuMP in Julia along with the solvers IPOPT and KNITRO are well-suited

to the task.7

4.2.2 Primal-Dual Method

Our second method relies on the same observation as the first: that the constant ag-

gregate state relies on a set (U, V,m, n) that satisfies the feasibility conditions and the

stationary transition rules.8 The primal-dual approach can be explained in two steps.

First we show that when β = 1, the three sets of conditions mentioned before are

the first order conditions to a min-max optimization problem. Such an optimization

problem can be solved using a primal-dual algorithm (Chambolle and Pock, 2011).

Second, we modify the algorithm to accommodate that agents do discount the future,

or that β < 1. In practise, the algorithm converges to a solution to (16). To vary β

between our two steps, we augment the set of parameters of µ by the discount factor

β, and consider the following function Z:

Z (U, V, U ′, V ′,m, n, β) =
∑

xy∈X0 Y0

wxyµxy(U, V, U
′, V ′,m, n, β)−

∑
x∈X

mx −
∑
y∈Y

ny,

where wxy = 2 for x ∈ X , y ∈ Y , wx0 = 1 for x ∈ X and w0y = 1 for y ∈ Y .

The min-max problem we solve for β = 1 is the following:

min
U,V

max
m,n

Z (U, V, U, V,m, n, 1) . (17)

Z is concave in (m,n) and convex in (U, V ). Taking first order conditions for the

max in (17) yields the feasibility conditions, and doing the same to the min obtains

the stationary transition rules. Problem (17) can be solved numerically using the

primal-dual algorithm. For the max-min problem (17), the algorithm takes starting

values (U0, V 0,m0, n0) and (m1, n1) = (m0, n0). Given a small increment τ and a

7Both solvers use interior point methods.
8Total mass normalization can be enforced with the primal-dual method too.
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threshold δ, it iterates on k ≥ 1 according to the following:

Intermediary (m̃, ñ)

{
m̃k

x = 2mk
x −mk−1

x ∀x ∈ X
ñk
y = 2nk

y − nk−1
y ∀y ∈ Y

(U, V ) update

{
Uk+1
x = Uk

x − τ
(
∂UxZ

k + β−1∂U ′
x
Zk
)

∀x ∈ X
V k+1
y = V k

y − τ
(
∂VyZ

k + β−1∂V ′
y
Zk
)

∀y ∈ Y

(m,n) update

{
mk+1

x = mk
x + τ∂mxZ

k+1 ∀x ∈ X
nk+1
y = nk

y + τ∂nyZ
k+1 ∀y ∈ Y

,

(18)

where {
Zk = Z(Uk, V k, Uk, V k, m̃k, ñk, β)

Zk+1 = Z(Uk+1, V k+1, Uk+1, V k+1,mk, nk, β).

The stopping criteria is

max
(∣∣Uk+1 − Uk

∣∣ , ∣∣V k+1 − V k
∣∣ , ∣∣mk+1 −mk

∣∣ , ∣∣nk+1 − nk
∣∣) < δ.

The main feature of the primal-dual algorithm is that it uses (m̃k, ñk), an aver-

age of (mk, nk) and (mk−1, nk−1), to compute the next (Uk+1, V k+1). This ensures

stability in the algorithm. Chambolle and Pock (2011) show that the algorithm con-

verges when β = 1, meaning when the feasibility and stability conditions are the first

order conditions to optimization problem (17). In practise, we have found that the

algorithm converges to (U, V,m, n) that solve the three sets of conditions even when

β < 1.

4.2.3 Methods Comparison

Table 1 describes equilibrium computation performance measures for both MPEC and

the primal-dual algorithm, depending on the size of X and Y , meaning depending on

the number of types on both sides of the market.

The MPEC method is faster than the primal-dual method on an equilibrium

computation for a small number of types (X ×Y = 2× 2 and X ×Y = 10× 10), but

is slower with a large number of types (X ×Y = 30×30 and X ×Y = 100×100). An

iteration in the primal-dual method is a step in algorithm (18), while an iteration in

MPEC is a step in the gradient descent algorithm used by the solver. An iteration in

MPEC involves the evaluation of the constraints in (16) as well as the computation of

31



their gradient. The primal-dual algorithm requires many more iterations than MPEC,

but each iteration takes up less time.

Table 1: MPEC and Primal-Dual Performance - Equilibrium Computation

#X ×#Y 2× 2 10× 10 30× 30 100× 100

MPEC

Min iterations 3 5 6 8
Max iterations 4 6 7 8
Mean time elapsed .0025 .0210 1.342 87.29

Primal-Dual

Min iterations 5979 2271 2309 5701
Max iterations 9266 2420 2710 6940
Mean time elapsed .0242 .0510 .7685 60.93

Notes: Code run in Julia on a Macbook Pro with an M2 chip, 16GB of RAM, and 8 cores. The
nonlinear solver for MPEC is KNITRO. Statistics computed on 10 replications. The convergence
tolerances are set to 10e-6.

A similar comparison is performed for both MPEC and the primal-dual method

adapted to structural estimation in the Supplemental Material, Section S.4.

5 Empirical Application

To illustrate the usefulness of our model applied to labor data, we estimate returns

to occupation-specific experience for elite Swedish engineers, those with five-year en-

gineering degrees, in the 1970s and 1980s. Depending on which occupation they are

employed in, workers can accumulate different types of human capital. Engineers

in particular can hold both technical and managerial human capital. A engineer’s

productivity in a given occupation depends on the type of human capital acquired

and also on his or her total experience in the labor market, meaning across all types

of jobs. We estimate our model on Swedish administrative data to measure the re-

spective contributions of occupation-specific human capital and total labor market

experience to employer-employee match formation.

We use data on observed matchings between Swedish engineers and firms from

1970 to 1990 from the Swedish Employer’s Federation (SAF). The dataset is a yearly

panel that follows engineers through time and allows us to reconstruct their past
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experiences from 1970 onward. We refer the reader to Fox (2009, 2010a) for more

background on the data, and see Section S.5 in the Supplemental Matirial for details

on the data cleaning. We parameterize the match surplus as a function of the engi-

neer’s years of experience in each occupation and his or her age (to proxy for total

labor market experience). We structurally estimate the surplus function parameters

with the MPEC method and maximum likelihood.

There are some necessary differences in this application from the setup in the

previous sections. Our administrative data on employed engineers do not contain

vacant jobs or unemployed workers, so our model in this section does not allow for

these possibilities. Also, we augment the model to allow workers and jobs to enter

and leave the labor market, in order to match the data.

5.1 Model Parameterization

To parameterize the model, we first define workers’ and jobs’ state variables, or types.

A job here is characterized solely by its occupation, general G or technical T :

y = 1 if the job is general, 0 otherwise.

A worker’s state variable is three-dimensional: potential experience xa measured

as the difference between the worker’s age and 26, technical experience xt measured as

the number of years employed in a technical occupation in the past 5 years, and general

experience xg measured as the number of years employed in a general occupation in

the past 5 years:

x = (xe, xt, xg) where xe ∈ {0, . . . , 38}, xg ∈ {0, . . . , 5}, xt ∈ {0, . . . , 5}.

We restrict occupation-specific experience to five years because it allows us to

use match data from 1975 on, as we cannot measure occupation-specific experience

before the start of the panel in 1970. Note that if a worker has been employed in

both technical and general jobs in the past five years, he or she holds both technical

and general experience: xt > 0 and xg > 0.

Given workers’ and jobs’ state variables, we parameterize match surplus or pro-

duction as:

Φxy(a, b) = a(x̃− y)2 + bxey, (19)
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where x̃ = xt

xt+xg
is the share of years employed in a technical occupation in the past

five years. The share x̃ is a measure of specialization into the technical occupation.

We rescale xe to be between 0 and 1, instead of 0 and 38, so that both x̃ and xe are

between 0 and 1. Also, recall that y ∈ {0, 1}.
If the coefficients a and b are both positive, match production is higher when

a worker with a general or managerial job has lots of managerial experience and

total labor market experience. Fox (2010b) discusses the nonparametric identification

of static matching games; parameters like the ratio 2a/b are identified in a static

matching game without data on unemployed workers and vacant jobs and without

relying on the parametric assumption of type 1 extreme value (logit) errors. The

ratio 2a/b is related to the importance of occupation-specific human capital versus

the importance of total labor market experience.9 Leaving the ratio 2a/b aside, the

values a and b convert the production from matches between types x and y to standard

logit units, as in Choo and Siow (2006) and much followup work, such as Chiappori

et al. (2017).

5.2 Estimation

To estimate λ = (a, b), we assume logit errors, a discount factor of β = 0.95 for our

annual data, and build on the MPEC strategy exposed in Section S.4 of the Sup-

plemental Material, with two alterations. The first alteration adapts the strategy to

the absence of unemployed workers and vacancies in the our administrative dataset.10

The second alteration accounts for an incoming or outgoing flow of workers to and

from the labor market every year, which are added to the stationary transition con-

ditions in equations (16). The flows are introduced to account for workers entering

9To gain intuition, consider a static labor market without logit shocks with one managerial job
y = 1, one technical job y = 0, and two workers with types

(
x̃1, x1

e

)
and

(
x̃2, x2

e

)
respectively. Using

the social planner result in Shapley and Shubik (1971), algebra shows that worker 1 will match to
the managerial job when

x1
e − x2

e

x̃1 − x̃2
>

2a

b
.

10Sweden had an incredibly low, by modern standards, unemployment rate during 1970–1990
and elite Swedish engineers were even less likely to be unemployed than typical workers. One may
presume that there were unfilled vacancies, although our empirical model does not allow for unfilled
vacancies due to a lack of data on them.
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and exiting the labor market. They are imposed during estimation, such that∑
x′,y′

Px|x′y′µx′y′(U, V, n,m) + ix =
∑
y

µxy(U, V, n,m)∑
x′,y′

Qy|x′y′µx′y′(U, V, n,m) + iy =
∑
x

µxy(U, V, n,m),

where ix and iy are net changes in the number of jobs and workers of a given type

from year to year.

The observed stationary matching µ̂ is the ratio of the number of observed matches

(x, y) over the total number of matches between 1975 and 1990:

µ̂xy =

∑1990
t=1975N

t
xy∑1990

t=1975

∑
x,y∈X Y N t

xy

,

where N t
xy is the number of observed (x, y) matches in year t. We choose the

{1975, . . . , 1990} interval because we use the five years between 1970 and 1974 to

measure workers’ past occupational experience. By construction, µ̂ sums to 1:∑
x,y∈X Y

µ̂xy = 1.

Therefore we also impose that µ(λ, U, V,m, n) also sums to 1.

The workers’ transition matrix P is deterministic: xt (resp. xg) is increased by

1 if the worker was employed in a technical occupation in the previous year, with a

cap at 5. Workers all gain one year of potential experience every year. Given our

characterization of jobs, they do not change types: transition matrix Q has entries

Qy′|xy = 1 if y′ = y, and 0 otherwise.

5.3 Results

Table 2 describes observed matching between job types (occupations) and worker

types (potential experience and specialization). Workers employed in technical occu-

pations tend to have less total labor market experienced (11.6 years versus 13.5 years)

and are a bit more specialized in terms of recent job-specific experience (84.3% of re-

cent experience in technical jobs versus for those currently in technical jobs versus

100%− 16.6% = 83.4% in general job experience for those currently in general jobs).
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Table 2: Matching Statistics

In General Job In Technical Job

Years potential labor market experience 13.5 11.6
% technical experience in last 5 years 16.6 84.3

Authors’ calculations from SAF data. See Supplemental Material Section S.5 for details on the data
construction.

Table 3: Point Estimates and Standard Errors

a b 2a
b

Point Estimate 1.83 0.75 4.87
Standard Error (.001) (.004) (.342)

Authors’ estimation from SAF data. Bootstrap standard errors computed with 50 bootstrap repli-
cations. Potential experience is normalized between 0 and 1.

In our dynamic model, the relative strength of observed matching between workers

x and firms y compared to another match can be driven by two factors: a relatively

higher surplus Φxy and next period’s workers’ expectation Px′|xy to transition to a high

return state variable x′. Here, specialized workers could be employed in a technical

occupation either because this match has high flow surplus or because workers expect

high returns from specializing further in the future. Given the estimated transition

matrices, our estimation is able to disentangle the two and estimate the surplus

parameters free from the bias of anticipation.

The estimation results for equation (19) are reported in Table 3. The ratio 2a/b is

equal to 4.87, indicating workers’ occupation-specific experience in the past five years

matters roughly four times more (subtracting 1 from 4.87 which is approximately 5)

for matching into a general or managerial job over a technical job compared to overall

potential experience in the labor market.

6 Conclusion

This paper introduces a new repeated matching games that generalizes the static,

transferable-utility matching games of Shapley and Shubik (1971) and related work to

a repeated matching game, where each period prices and matches form, flow profits are

realized by the forward-looking agents, and agent state variables evolve stochastically

36



as a function of current matches. We prove existence of both a time-varying, dynamic

competitive equilibrium as well as a stationary equilibrium. We prove the key result

that the dynamic competitive equilibrium solves a social planner’s problem. Our

results are shown both for the baseline model without econometric errors, as in the

static Shapley and Shubik (1971) and related work, and a model with econometric

errors, as in the static Choo and Siow (2006) and related work.

We provide computational tools for determining both a dynamic competitive equi-

librium and a stationary equilibrium, for both the models with and without econo-

metric errors. We show how to modify the models for stationary equilibrium for

structural estimation of the parameters in the production to a match, using data on

changing relationships over time. Our empirical illustration for elite Swedish engi-

neers finds that recent work experience is roughly four times more important than

total labor market experience in sorting into managerial instead of technical jobs.

A Proofs

A.1 Proofs of Results in Section 2

A.1.1 Proposition 2

Proof. We rely on Romeijn and Smith (1998), a paper on linear programming with

a countable number of terms in the objective function and a countable number of

constraints. This paper reverses the term primal and dual from our usage. In other

words, the maximization problem, our primal, is called the dual in Romeijn and

Smith. To avoid confusion, we will use the terms from our paper in this proof.

The formal dual from Romeijn and Smith uses control variables Ũ t
x and Ṽ t

y that

are the present discounted values of future utility from the viewpoint of the initial

period, so that Ũ t
x = βtU t

x. Our dual program then becomes

min
Ũt,Ṽ t

{∑
x∈X

mxŨ
0
x +

∑
y∈Y

nyṼ
0
y

}
subject to

Ũ t
x + Ṽ t

y ≥ βtΦxy +
∑
x′∈X

Px′|xyŨ
t+1
x′ +

∑
y′∈Y

Qy′|xyṼ
t+1
y′ ∀t ≥ 0, x ∈ X , y ∈ Y
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Ũ t
x ≥

∑
x′∈X

Px′|x0Ũ
t+1
x′ ∀t, x ∈ X

Ṽ t
y ≥

∑
y′∈Y

Qy′|0yṼ
t+1
y′ ∀t, y ∈ Y .

To verify that this is indeed the dual under the definition used in Romeijn and Smith,

we need to show a crosswalk between our paper’s notation and the notation used in

Romeijn and Smith. We use bars to refer to the symbols in Romeijn and Smith

within this proof, as some of their symbols are the same as symbols we use for other

purposes.

The crosswalk with Romeijn and Smith is ī → t+1, c̄1 → (m⊤, n⊤)⊤, c̄ī → 0∀ī ≥ 2,

x̄ī → ((Ũ ī−1)⊤, (Ṽ ī−1)⊤)⊤, Āī,̄i−1 is a matrix (defined independently of i) of size

(|X ||Y| + |X | + |Y|) × (|X | + |Y|) that is such that Āı̄,̄ı−1

(
Ũ
Ṽ

)
is the vector obtained

by stacking Ũx + Ṽy, Ũx and Ṽy in the row-major order.11 Next, Āī,̄i → −(P⊤, Q⊤),

bī → β ī−1Φ where Φ is the vectorized version of the match production matrix including

values of 0 for being unmatched, and ȳī → µī−1 where µ is the vectorized version of

the matching matrix. As we include outside options with production levels of zero,

the nonnegativity constraints on the control variables in Romeijn and Smith will be

satisfied in our dual.

Now, that we have derived the dual, we wish to prove strong duality, which means

that the optimized objective function values of the primal and dual are equal. We refer

to Corollary 3.9 in Romeijn and Smith to prove strong duality. This corollary requires

upper bounds on the control variables each period. We let ūī = (β ī−1maxΦ)1|X |+|Y|

be an upper bound on the discounted payoffs of agents of any type. Similarly, we let

v̄ī = (max (M,N))1|X ||Y|+|X |+|Y| be an upper bound on the mass of matches of any

type.

The condition in Corollary 3.9 is

lim
ī→∞

v̄⊤ī+1|Āī,̄i−1|ūī = 0

where |Āī,̄i−1| is the matrix obtained by taking the absolute values of all entries in

Āī,̄i−1 term by term. By substituting in the definitions of the terms, one can see that

the this expression is of the order of βi, and by Corollary 3.9, strong duality is proved.

11For example, if
∣∣∣X̃∣∣∣ = |Y| = 2, we have Āı̄,̄ı−1

(
Ũ
Ṽ

)
= (Ũ1 + Ṽ1, Ũ1 + Ṽ2, Ũ2 + Ṽ1, Ũ2 +

Ṽ2, Ũ1, Ũ2, Ṽ1, Ṽ2)
⊤.
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A.1.2 Theorem 1

Proposition 2 states that strong duality holds for the primal and dual countably

infinite linear programs and the text after the theorem states that many properties

familiar from the analysis of finite linear programs immediately apply to our problem,

given that strong duality holds.

Let’s first show the forward direction, where we start with primal and dual solu-

tions and show that a DCE can be found. At time t, let µt be the optimal policy of

the social planner for the aggregate state (mt, nt) and let (U t, V t) be the associated

Lagrange multipliers on the primal constraints. Then (U t, V t) satisfies the dual’s

inequality conditions, which imply

−V t
y + γxy + β

∑
y′∈Y

Qy′|xyV
t+1
y′ ≤ U t

x − αxy − β
∑
x′∈X

Px′|xyU
t+1
x′ ∀x ∈ X , y ∈ Y (20)

with equality if µt
xy > 0. Thus wt defined in (7) is indeed well defined, and implies

that

U t
x ≥ αxy + wt

xy + β
∑
x′∈X

Px′|xyU
t+1
x′ .

holds for all x and t, with an equality if µt
xy > 0, which implies that

U t
x = max

y∈Y0

{αxy + wt
xy + β

∑
x′∈X

Px′|xyU
t+1
x′ }.

A similar statement can be made for V t
y , and thus equation (4) in definition 1 is

satisfied, which shows that the tuple (µ,w) is a DCE.

For the other direction of the argument, we need to show that a DCE satisfies

the optimality conditions of a linear program. Let (µ,w) be a DCE and let (U t, V t)t

be the associated continuation values, as in Definition 1. Then every µt is feasible

by definition, and hence satisfies the social planner’s primal problem’s feasibility

conditions. To check the dual problem’s feasibility conditions, note that by definition

of the DCE:

U t
x

(
w(t)
)
≥ αxy + wt

xy + β
∑
x′∈X

Px′|xyU
t+1
x′

(
w(t+1)

)
∀x, y ∈ X Y0
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and

V t
y

(
w(t)
)
≥ γxy − wt

xy + β
∑
y′∈Y

Qy′|xyV
t+1
y′

(
w(t+1)

)
∀x, y ∈ X 0 Y .

Adding these two inequalities for every x, y ∈ X Y gives

U t
x

(
w(t)
)
+V t

y

(
w(t)
)
≥ Φxy

+ β

(∑
x′∈X

Px′|xyU
t+1
x′

(
w(t+1)

)
+
∑
y′∈Y

Qy′|xyV
t+1
y′

(
w(t+1)

))
,

(21)

which is the first inequality in the social planner’s dual problem as shown in the

main text. The next two inequalities in the dual problem are also satisfied by similar

reasoning.

Finally, there remain to check the complementary slackness conditions:

µxy

(
Φxy − U t

x

(
w(t)
)
− V t

y

(
w(t)
)

+β

(∑
x′∈X

Px′|xyU
t+1
x′

(
w(t+1)

)
+
∑
y′∈Y

Qy′|xyV
t+1
y′

(
w(t+1)

)))
= 0 ∀x, y ∈ X Y

µx0

(
−U t

x

(
w(t)
)
+ β

∑
x′∈X

Px′|x0U
t+1
x′

(
w(t+1)

))
= 0 ∀x ∈ X

µ0y

(
−V t

y

(
w(t)
)
+ β

∑
y′∈Y

Qy′|0yV
t+1
y′

(
w(t+1)

))
= 0 ∀y ∈ Y .

These are obtained by the definition of a DCE: if µt
xy > 0, then option x is optimal

for y and conversely, and thus (21) holds as an equality. (µt)t and (U t, V t)t therefore

satisfy the primal equalities, the dual inequalities, and the complementary slackness

conditions. Therefore, the components of the DCE are optimal for the social planner

problem.

A.1.3 Theorem 2

Proof. Define the set-valued function φ : L → L by

φ : (m,n) → {(Pµ,Qµ) | µ solution to (6) given (m,n)} ,
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where we recall that L =
{
(m,n)|

∑
x mx = M,

∑
y ny = N

}
. This associates the

next period’s population counts to the present period ones. There can be multiple

solutions µ to problem (6), so φ is a set-valued function.

We show that φ admits a fixed point using Kakutani’s theorem. To apply the

theorem we need the following:

(1) L is non-empty, compact and convex.

(2) φ has closed graph, where the graph of φ is

Grφ = {(m,n,m′, n′) ∈ L× L | (m′, n′) ∈ φ(m,n)} .

(3) The set φ(m,n) is non-empty and convex.

Consider point (1). Clearly L is non-empty. Compactness arises because L is

closed and bounded. For convexity, consider two aggregate states (m,n), (m′, n′) ∈ L.

Then, on the worker side,
∑

x θmx + (1− θ)m′
x = θM + (1− θ)M = M and the same

applies on the firm side. Hence the linear combination (θm+(1−θ)m′, θn+(1−θ)n′)

also belongs to L.

To show point (2), we use the closed graph theorem (recalled as Theorem 17.11

in Aliprantis and Border (2006)) for set-valued functions, which states that if φ : L →
L is upper hemicontinuous and φ(m,n) is a closed set for all (m,n) ∈ L then Grφ is

closed.

We use Berge’s maximum theorem (Aliprantis and Border (2006), Theorem 17.31)

which states that if

(a) the correspondence C(m,n) ⇒ {µ|µ ∈ M(m,n)} is compact-valued and contin-

uous and

(b) the objective function µ →
∑

xy∈X0 Y0
Φxyµxy + βW (Pµ,Qµ) is continuous,

then the set of solutions µ is upper hemicontinuous in the argument (m,n), with

non-empty and compact values. Because the set of solutions is compact and lies in a

metric space, the set is also closed, the other condition of the closed graph theorem

for set-valued functions.

We now show points (a) and (b). Lemma 6 in the Supplementary Material shows

point (a). Point (b) is straightforward because µ enters the per-period payoffs lin-

early, we know W is uniquely defined across across all solutions and continuous from
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Proposition 1, sums like Pµ are themselves linear (continuous) functions of µ, and

compositions of continuous functions like W (Pµ,Qµ) are continuous.

Point (3) of Kakutani’s theorem is that φ(m,n) is non-empty and convex. We

just used the maximum theorem to show that φ(m,n) is non-empty and compact.

Convexity follows from the fact that φ(m,n) is the set of maximizers of the function

µ →
∑

xy∈X0 Y0
Φxyµxy + βW (Pµ,Qµ), which is concave, and therefore, is a convex

set.

A.2 Proofs of Results in Section 3

A.2.1 Theorem 5

Proof. As in the proof of Theorem 2, define function φ : L → L by

φ : (m,n) → (Pµ(m,n), Qµ(m,n))

where µ(m,n) is the social planner’s optimal policy given aggregate state (m,n),

i.e. µ(m,n) solves (13). There is a unique social planner solution to the regularized

problem.

We show that φ admits a fixed point using Brouwer’s theorem. To apply the

theorem we need the following:

(1) L is non-empty, compact and convex.

(2) φ is continuous in (m,n).

Point (1) was shown in the proof of Theorem 2. To show point (2), we need the

function (m,n) → µ(m,n) to be continuous in (m,n), as Pµ and Qµ are linear

functions of µ. We show continuity of µ(m,n) using Berge’s maximum theorem.

We have shown in Corollary 2 that µ(m,n) is the unique maximizer. To apply the

maximum theorem we need the following:

(a) C : (m,n) ⇒ {µ |µ ∈ M(m,n)} is a compact-valued and continuous correspon-

dence. This was shown in the proof of Theorem 2.

(b) W is continuous. This is shown in Proposition 3.

Since we have shown (1) and (2), we obtain with Brouwer that φ admits a fixed

point.
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Supplement to “Repeated Matching Games: An
Empirical Framework”

S.1 Proof of Results in Section 2

S.1.1 Properties of the action set

We need to prove some properties of the social planner’s action set M(m,n) and the

related correspondence C(m,n) ⇒ {µ|µ ∈ M(m,n)}. We start with the following

lemma.

Lemma 6. 1. C is compact-valued.

2. The correspondence C : (m,n) ⇒ {µ |µ ∈ M(m,n)} is both lower and upper

hemicontinuous. Therefore it is continuous.

Proof. The conclusion about being compact valued in the lemma is easy to see as

M(m,n) is closed and bounded for all (m,n) ∈ L. Hence C is compact-valued.

The rest of the proof focuses on showing that the correspondence C is continuous.

First, to show that C is upper hemicontinuous, take two sequences {(mj, nj)} ∈ L

and {µj} ∈ M (mj, nj) that converge to (m,n) and µ, respectively. We have to show

that µ ∈ M(m,n). This is straightforward since

mj
x =

∑
y∈Y0

µj
xy →

∑
y∈Y0

µxy = mx and nj
y =

∑
x∈X 0

µj
xy →

∑
x∈X 0

µxy = ny.

The definition of M(m,n) requires all workers to be matched or single and all firms

to be matched or single and finite sums of elements in the sequence converge, so

µ ∈ M(m,n), as desired.

Showing that C is lower hemicontinuous is lengthier. Fix (m,n) ∈ L and µ ∈
M(m,n). Let {(mj, nj)} be a sequence that converges to (m,n). We will find a

sequence {µj} that converges to µ and such that µj ∈ M (mj, nj) for all j.

First, note that M(m,n) is a set defined by a finite number of linear inequalities

and linear equalities. As such, it is a convex polyhedron and by Carathéodory’s

theorem every µ ∈ M(m,n) can be written as

µ =
∑
k

αkµ
k,
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where the µk are the extreme points of M(m,n) and the coefficients αk are all non-

negative and sum to 1. Each extremal point µk is the unique (by being an extremal

point) solution to

min
µ≥0

µ⊤Ψk s.t.
∑
y∈Y0

µxy = mx,
∑
x∈X 0

µxy = ny (S.1)

for some appropriate choice of a direction vector Ψk. Note that the coefficients αk

are specific to the limit point (m,n) for the social planner’s state variable and the

desired limit point µ for the social planner’s choice variable fixed above.

Define our candidate sequence {µj} as follows:

µj =
∑
k

αkµ
j,k where each µj,k solves min

µ≥0
µ⊤Ψk s.t.

∑
y∈Y0

µxy = mj
x,
∑
x∈X 0

µxy = nj
y.

The coefficients αk are specific to the points (m,n) and the µ fixed above and so this

is not another application of Carathéodory’s theorem. Also note that the direction

vectors Ψk are from the direction vectors corresponding to the extreme points of the

limit set M(m,n), as implicit in (S.1). Because the coefficients αk are nonnegative

and sum to 1, µj as defined is a convex combination of points in M (mj, nj) and is

in that set.

If we can show that for each k, µj,k converges to the solution of (S.1) as j → ∞,

then we will have shown that µj → µ. Note that if we could apply the theorem

of the maximum to (S.1), we would be done, as the unique solution to (S.1) would

by that theorem be continuous in (m,n). However, applying the theorem of the

maximum requires the output of Lemma 6, which we are trying to prove, so this is

not a profitable direction.

Because no element of the tuple µ can be more than the number of workers or

more than the number of firms, there exists a compact superset that contains all the

sequence sets M (mj, nj) as well as the sequence limit M(m,n). Because µj lives in

this compact superset, it converges to some µ̃, up to extraction, within this superset.12

This compactness argument does not show that µ̃ ∈ M(m,n).

We show that µ̃ is a solution to problem (S.1) by using the compacity of (S.1)’s

12The phrase ”by extraction” means that a convergent subsequence can be found. The phrase
avoids needing to introduce separate notation for this convergent subsequence.
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feasible set and its dual’s feasible set’s compacity. Problem (S.1)’s dual is

max
u,v

∑
x∈X

mxux +
∑
y∈Y

nyvy s.t ux + vy ≤ Ψk
xy, ux ≤ Ψk

x0, vy ≤ Ψk
0y ∀x, y,

whose feasible set can without loss be made closed and bounded and hence compact.13

The Lagrange multipliers uj and vj for the primal problem for index j are the

solutions to the dual for index j. The dual for the jth index is where each mx is

updated to mj
x and each ny is updated to nj

y.

As by a previous argument the feasible set for the dual is compact, we can con-

struct a product space of compact supersets where the tuples (uj, vj, µj) converge by

extraction within this product space of compact supersets to the tuple (ũ, ṽ, µ̃). This

is reminiscent of econometric theory, where parameter spaces are often compact in

order to ensure convergence of an optimization-based estimator.

We wish to show that this tuple satisfies the optimality conditions for the primal

and dual problems∑
y∈Y0

µj
xy = mj

x and
∑
x∈X 0

µj
xy = nj

y ∀x ∈ X , y ∈ Y

µj
xy ≥ 0∀x ∈ X 0, y ∈ Y0

uj
x + vjy ≤ Ψk

xy, u
j
x ≤ Ψk

x0 and vjy ≤ Ψk
0y ∀x ∈ X , y ∈ Y∑

x,y

µj
xy

(
uj
x + vjy −Ψk

xy

)
+
∑
x

µj
x0

(
uj
x −Ψk

x0

)
+
∑
y

µj
0y

(
vjy −Ψk

0y

)
= 0∀x ∈ X , y ∈ Y .

By inspection, these optimality conditions are continuous in (mj, nj, uj, vj, µj) and

so converge to the optimality conditions for problem (S.1). Because the solution to

problem (S.1) is unique, µ = µ̃.

S.1.2 Proposition 1

Proof. The properties of being continuous and bounded arise from Theorem 4.6 of

Stokey et al. One conditions of Theorem 4.6 is that the per-period objective function is

13There are many references on how to construct the dual of a finite-dimensional linear program.
These primal and duals look deceptively like static, two-sided matching problems but are not match-
ing problems.
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bounded and continuous; see the argument just given. Another condition of Theorem

4.6 is that the social planner’s action space C : (m,n) ⇒ {µ |µ ∈ M(m,n)}, as

seen as a correspondence with argument (m,n), is non-empty, compact valued, and

continuous in (m,n). Non-emptiness is easy to verify by inspection. Our Lemma 6

shows that C is compact valued and continuous.

Let B(L) be the space of bounded continuous functions V : L → R with the

sup norm, denoted ∥.∥. To show that W (m,n) satisfying (6) exists, we follow the

same proof technique as in Stokey et al. (1989), Theorem 4.6 and show that operator

T : B(L) → B(L) defined by:

(TV )(m,n) = max
µ∈M(m,n)

{ ∑
xy∈X0 Y0

Φxyµxy + βV (Pµ,Qµ)

}
,

is a contraction. Because V ∈ B(L), TV is also in B(L). Next, we argue that T is a

contraction in B(L) for the sup norm using Blackwell’s theorem, which, as we recall,

states that if T is order-preserving and satisfies T (V + c) = TV + βc, then T is a

contraction of modulus β for the sup norm. These two conditions are easily satisfied,

and thus T is a contraction for the sup norm, which shows that equation (6) has a

unique solution in B(L).

Next, we need to show that the solution W to equation (6) is concave. To do this,

we follow again the argument in Stokey et al. (1989), Theorem 4.8 and we introduce

the space CV B(L) of functions that are concave and bounded on L. This space

is a subset of B(L), and we show that it is stable by T . Indeed, the Lagrangian

formulation for TV (m,n) yields the following expression for TV (m,n):

= max
µ∈M(m,n)

{ ∑
xy∈X0Y0

µxyΦxy + βV (Pµ,Qµ)

}
= max

µxy≥0
min
ux,vy

∑
x∈X

mxux +
∑
y∈Y

nyvy +
∑

xy∈X0Y0

µxy (Φxy − ux − vy) + βV (Pµ,Qµ)

= min
u,v

∑
x∈X

mxux +
∑
y∈Y

nyvy + max
µxy≥0

{ ∑
xy∈X0Y0

µxy (Φxy − ux − vy) + βV (Pµ,Qµ)

}
,

where strong duality applies between lines two and three. This shows that TV (n,m)

is concave in (n,m). As a result, T has a unique fixed point in CV B(L), which
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coincides with W . This shows that W is an element of CV B(L), and therefore, that

it is a concave function.

S.2 Proof of Results in Section 3

S.2.1 Lemma 3

Proof. From equation (3.5) in Galichon and Salanié (2022), we have thatG∗
x(

µx∑
y∈Y0

µxy
) =

−E[ϵY ], where Y is the alternative y ∈ Y chosen by an agent of type x with unob-

servable heterogeneity vector (ϵiy)y∈Y0
. Assumption 3 ensures the ratio µx∑

y∈Y0
µxy

is

well defined as
∑

y∈Y0
µxy > 0. Hence G∗ and H∗ are well defined by Assump-

tion 2. By taking absolute values and applying the triangle inequality, one has

|G∗
x(

µ∑
y∈Y0

µxy
)| ≤

∑
y∈Y E[|ϵy|], where this upper bound depends only on the dis-

tribution Lx. It is finite by Assumption 1. A similar bound can be computed for H∗
y .

This proves the result, as is a weighted sum of the functions G∗
x and H∗

y . G
∗ and H∗

are continuously differentiable by Assumption 2, hence µ → E(µ) is continuous

S.2.2 Proposition 3

Proof. We follow the same steps as in the proof of Proposition 1. Showing the condi-

tions of monotonicity and discountability are straightforward. Lemma 3 ensures the

objective function is continuous and bounded. A key difference with Proposition 1 is

that the entropy function µ → E(µ) is a strictly convex function, and since the differ-

ence between a concave and a strictly convex function is strictly concave, we obtain

the strict concavity of W by directly citing Theorem 4.8 of Stokey et al. (1989).

S.2.3 Proposition 4

Proof. The main challenge here is that there is a nonlinear program with a countably

infinite number of controls and a countably infinite number of constraints. The main

paper we refer to is Luc and Volle (2021). In Luc and Volle, the primal is

inf
(λt)t∈K

∞∑
t=0

ft(λ
t) (Plv)
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where K is a closed convex set.

Let the per-period objective function contribution be

ft(λ
t) =

(
E(λt)− λt⊤Φ)

)
,

where the entropy term is

E(λt) =
∑
x∈X

(∑
y∈Y0

λt
xy

)
G∗

x

(
λt
x.∑

y∈Y0
λt
xy

)
+
∑
y∈Y

(∑
x∈X 0

λt
xy

)
H∗

y

(
λt
.y∑

x∈X 0
λt
xy

)
.

Note the change of variable from the main text: λt = βtµt. Let also

K =

{
λ ≥ 0 :

∑
y∈Y0

λ0
xy = m0

x and
∑

x∈X0
λ0
xy = n0

y

β (Pλt−1)x =
∑

y∈Y0
λt
xy and β (Qλt−1)y =

∑
x∈X0

λt
xy, t ≥ 1

}
.

We omit a formal argument that K is closed and convex, but the latter property

arises from the linearity of the terms in the definition of K. Our social planner

problem (10) under (11) and (12) is the inverse of Luc and Volle (2021)’s primal:

− sup
(λt)t∈K

∞∑
t=0

−ft(λ
t).

Let f ∗
t and δ∗K be the convex conjugates of ft and δK , where δK(λ) = 1 {λ ∈ K}.

Luc and Volle (2021)’s dual is, for an arbitrary control variable dt,

sup
(dt)t

−

(
∞∑
t=0

{
f ∗
t (d

t)
}
+ δ∗K(−(dt)t)

)
, (Dlv)

which with our change of sign becomes

− inf
(dt)t

(
∞∑
t=0

{
f ∗
t (−dt)

}
+ δ∗K((d

t)t)

)
,

with this equivalence shown using standard properties found in convex analysis text-

books. Theorem 4 in Luc and Volle (2021) states that if

1. The functions ft are proper, convex, lower semicontinuous and have compact

domains ∀t.

52



2. (f t)t satisfies
∑

t ∥ft∥ < ∞ for the sup norm.

3. ft is non negative ∀t.

4. The primal has a feasible solution.

then min (Plv) = sup (Dlv), meaning that the duality gap is zero and the optimum is

attained for the primal.

Note that a proper function in convex analysis is a function that is never −∞ and

is not +∞ at at least one argument.

We now show the four conditions above hold. Starting with the first condition,

for all t, f t is defined on the following compact domain:

dom(ft) =

{
λ ≥ 0

∣∣∣∣ ∑
x∈X

∑
y∈Y0

λxy = βtM,
∑
y∈Y

∑
x∈X 0

λxy = βtN

}
.

The only nonlinear part of ft is the the entropy term E(λt). This entropy term E(λt)

is comprised of a weighted sum, with nonnegative weights, of the convex conjugates of

social surplus functions. If G(u) is a social surplus function, then its convex conjugate

is

G∗(p) = sup
u∈JY0

{p · u−G(u)} ,

where JY0
is the number of y-side types in Y0. A convex conjugate of a social surplus

function has a domain equal to the probability simplex of dimension JY0
.

Note that the convex conjugates of particular social surplus functions are them-

selves sometimes called negative generalized entropy terms. The full-support Assump-

tion 2 needs to be invoked to ensure that the social surplus functions G(u) have good

properties and that, as we will show, the convex conjugates G∗(p) of social surplus

functions. To reduce the length of the proof, we assume knowledge of the properties

of social surplus functions G(u) under Assumption 2 and focus on deriving properties

of the convex conjugates of social surplus functions. These properties are then inher-

ited by E(λt), the weighted sum, with nonnegative weights, of the convex conjugates

of social surplus functions. If E(λt) has a certain property, then likely ft will inherit

that property as E(λt) enters ft linearly with a positive multiplicative coefficient and

the other term in E(λt) is itself linear in the argument λt and λt is restricted to the

set K.
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We now show that G∗(p) is proper, as defined above, taking as known from prior

literature that G(u) is proper under Assumption 2. By the latter property, there

exists a value u such that G(u) < ∞. By inspecting the definition of G∗(p), we can

see that G∗(p) cannot be −∞ for any p as the goal is to take a supremum over u of

a term where G(u) enters with a minus sign and we know that there is at least one

u where G(u) < ∞. Also, choosing p = 0 clearly shows that G∗(0) < ∞. So G∗(p) is

proper and hence E(λt) is proper. Inspecting the definitions of ft and the constraint

set K, we can see that ft cannot be made to be −∞ everywhere on a value in K, so

ft is proper.

Since the function G∗(p) is convex, it is continuous in the interior of its domain.

Using this result and then inspecting the relevant formulas, the weighted sum E(λt)

is continuous and the linear function ft of E(λt) is continuous. A continuous function

is automatically lower semicontinuous.

The convex conjugate G∗(p) is almost by definition convex, as it is a convex

conjugate. Each G∗(p) enters positively into the otherwise linear E(λt) and ft, so

both E(λt) and ft are convex.

For the second condition in Theorem 4 of Luc and Volle (2021), we need to show

that
∑

t ∥ft∥ < ∞ for the supremum norm. The argument in the proof of Lemma 3

implies that G∗(p) < ∞ for all p. From the definition of the domain of ft, we know

that any λt ∈ dom(ft) is such that
∑

x∈X
∑

y∈Y0
λt
xy and

∑
y∈Y
∑

x∈X 0
λt
xy tend to 0

as t tends to infinity. Since λt
xy ≥ 0 for all t, this implies limt→∞ λt

xy = 0 for all x and

y. As G∗ is bounded, this implies that limt→∞ ft(λt) = 0 for all λt ∈ dom(ft), and

therefore
∑

t ∥ft∥ < ∞.

For the third condition in Theorem 4 of Luc and Volle (2021), f t as such is not

nonnegative for all t: it could be that for some λ in dom(f), E(λ) < λ⊤Φ, in which

case f t(λ) < 0. However, we can modify f t such that the solutions to the primal

and dual and the properties of f t shown above remain unchanged. Add the positive

constant βt max{M,N}max{Φ} to every f t. The newly redefined function f t is non-

negative for every λ ∈ dom(ft) and adding a positive, finite constant does not alter

the previously established properties.

For the fourth condition in Theorem 4 of Luc and Volle (2021), we need to show

that the primal has a feasible solution. A simple feasible solution for (Plv) is λ such
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that:

λ0
xy = δ , λ0

x0 = m0
x −

∑
y∈Y

λ0
xy , λ0

0y = n0
y −

∑
x∈X

λ0
xy ∀x ∈ X , y ∈ Y

λt
xy = δ , λt

x0 = β(Pλt−1)x −
∑
y∈Y

λt
xy , λt

0y = β(Qλt−1)y −
∑
x∈X

λt
xy ∀x ∈ X , y ∈ Y , ∀t > 0,

where δ is an arbitrarily small positive number.

The conditions for Luc and Volle (2021)’s Theorem 4 are all satisfied, so the

objective functions of the primal and dual are equal at solutions:

max
(µt)t∈K

∞∑
t=0

−ft(µ
t) = inf

(dt)t

(
∞∑
t=0

f ∗
t (−dt) + δ∗K((d

t)t)

)
at the optima. This result is the main notion of strong duality shown in Luc and

Volle (2021).

However, there are limitations of this strong duality result compared to the strong

duality result in the statement of the proposition being proved. Therefore, we need

two more parts to this proof.

(1) We need to transform the dual(Dlv) into a more intuitive, computationally

attractive form, as shown in the statement of the proposition.

(2) Luc and Volle (2021)’s theorem does not specify if the infinum is attained in

the dual, which we need to later show the equivalence of a dynamic competitive

equilibrium to the dual solution and to show that computational methods have

a well-defined target to compute.

We start with goal (1), deriving a more intuitive dual. Recall that the existing

dual (Dlv) contains two terms for each t. Let us tackle them one at a time.

The per-period primal objective contribution ft’s convex conjugate is

f ∗
t (−d) = max

λ
{−E(λ) + λt⊤(Φ− d)}

= E∗(Φ− d).

While E(λ) itself is a comprised of a weighted sum of convex conjugates of social

surplus functions, here the new E∗(λ) is the convex conjugate of E(λ).
An important result is that E∗ is either 0 or ∞, as shown in the following lemma.
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Lemma 7. E∗(ζ) = 0 if there exists ũ = (ũxy)x∈X ,y∈Y such that Gx(ũ) ≤ 0 and

Hy(ζ − ũ) ≤ 0 for all x ∈ X , y ∈ Y, and E∗(ζ) = +∞ otherwise.

Proof. The definition of a convex conjugate E∗(ζ) involves maximizing over some

value µ. Based on the definition of E(µ), it is instructive to thinking of this as an

inner problem of maximizing over the set of feasible matching probabilities in some

matching problem, M(m,n) =
{
µ ≥ 0|

∑
y∈Y µxy = mx and

∑
x∈X µxy = ny

}
and an

outer problem where the masses of types (m,n) are maximized over. The pair of

the outer and inner maximization problems searchers over all µ, as in the original

definition of E∗(ζ). Exploiting the fact that µ enters linearly into the definition of

E(µ), the inner and outer maximization problems let us rewrite E∗(ζ) as

E∗(ζ) = max
(m,n)

max
µ∈M(m,n)

µ⊤

{
ζ −

∑
x∈X

mxG
∗
x

(
µx.

mx

)
−
∑
y∈Y

nyH
∗
y

(
µ.y

ny

)}
.

Consider the inner optimization problem. By Theorem 3 in Galichon and Salanié

(2022):

max
µ∈M(m,n)

{
µ⊤ζ −

∑
x∈X

mxG
∗
x

(
µx.

mx

)
−
∑
y∈Y

nyH
∗
y

(
µ.y

ny

)}

= min
ũ

{∑
x∈X

mxGx(ũ) +
∑
y∈Y

nyHy(ζ − ũ)

}
,

giving a reformulated inner optimization problem. Return to the outer optimization

problem over (m,n). If the minimum in ũ for the inner optimization problem is such

that Gx(ũ) > 0, or Hy(ζ − ũ) > 0 for all x, y, then in the outer problem one can

choose mx or ny arbitrarily large so that E∗(ζ) = ∞. Hence E∗(ζ) = 0 if there exists

a ũ such that both Gx(ũ) and Hy(ζ − ũ) are below 0.

Now we turn to the other term in the existing dual (Dlv), δ∗K . This is the convex

conjugate of an indicator function. The convex conjugate of an indicator function is

sometimes called a support function for K. The first equality in the below algebra

introduces the support function. Note that as λ = (λt)t ∈ l1, its dual variable d is in

l∞ (its dual space) so the support function is well-defined.
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The second equality below introduces the Lagrangian with respect to the con-

straints K. The requirement from K that λ ≥ 0 is kept in the supremum and

not incorporated as a separate Lagrangian term. This means that the remaining

terms in K are all equality constraints. With only equality constraints in the La-

grangian, the Lagrange multipliers U, V can be both negative and positive. As usual,

the Lagrange multipliers do not enter the original problem’s objective, here the sup-

port function. One can see that an infinum over the Lagrange multipliers has been

added. Using generic notation, the problem of maxz,ν g(x) + νh(x) is equivalent to

maxz g(z) + minν νh(z), as either way the solution involves setting the Lagrange mul-

tiplier λ to 0 when the equality constraints are satisfied and picking λ to drive the

entire objective to −∞ when the constraints are violated.

The third inequality involves swapping the inner and outer problems, with the

infinum now being the outer problem and the supremum being the inner problem.

This is arising from the strong duality proved in Romeijn et al. (1992), as the objective

function is linear and the constraints are affine. The nonnegativity constraints are

satsified, and because we have already shown that λt → 0 entrywise as t tends to

infinity, so is the stationarity constraint.

The fourth equality holds because the outer optimization problem will make the

parenthetical terms inside the supremum negative, so the inner problem is solved

by setting µ = 0 and the problem can be rewritten as a single-layer constrained

optimization problem.

δ∗K(d) = sup
λ∈K

{∑
t≥0

λt⊤dt

}

= sup
λ≥0

{∑
t≥0

λt⊤dt

+ inf
U,V

{
U0⊤m0 + V 0⊤n0 −

∑
x∈X

U0
x

(∑
y∈Y0

λxy

)
−
∑
x∈X

V 0
y

(∑
x∈X 0

λxy

)

+
∑
t≥1

∑
x∈X

U t
x

(
β(Pλt−1)x −

∑
y∈Y0

λt
xy

)

+
∑
t≥1

∑
y∈Y

V t
y

(
β(Qλt−1)y −

∑
x∈X 0

λt
xy

)}}
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= inf
U,V

{
U0⊤m0 + V 0⊤n0

+ sup
λ≥0

{ ∑
xy∈X Y

λt
xy

(
β(P⊤U t+1 +Q⊤V t+1)xy − U t

x − V t
y + dtxy

)
+
∑
x∈X

λt
x0

(
β(P⊤U t+1)x0 − U t

x + dtx0
)

+
∑
y∈Y

λt
0y

(
β(Q⊤V t+1)0y − V t

y + dt0y
)}}

= inf
U,V

{
U0⊤m0 + V 0⊤n0

}
: U t

x + V t
y ≥ dtxy + β

(
P⊤U t+1 +Q⊤V t+1

)
xy
, t ≥ 0

U t
x ≥ dtx0 + β

(
P⊤U t+1

)
x0
, t ≥ 0

V t
y ≥ dt0y + β

(
Q⊤V t+1

)
0y
, t ≥ 0.

Next, we put f ∗
t and δ∗K together by ensuring the constraints in Lemma 7 are met,

so that f ∗
t is 0. Then the dual is

inf
dt,Ut,V t

inf
ũt

∑
x∈X

m0
xU

0
x +

∑
y∈Y

n0
yV

0
y

s.t U t
x + V t

y ≥ dtxy + β
(
P⊤U t+1 +Q⊤V t+1

)
xy
, t ≥ 0

U t
x ≥ dtx0 + β

(
P⊤U t+1

)
x0
, t ≥ 0

V t
y ≥ dt0y + β

(
Q⊤V t+1

)
0y
, t ≥ 0

Gx

(
ũt
)
≤ 0, t ≥ 0

Hy

(
Φ− dt − ũt

)
≤ 0, t ≥ 0.

The first three constraints in the problem above are saturated. We will use a proof

by induction. The objective is minimized if U0 and V0 are as small as possible. Hence

the constraints are saturated at t = 0. As part of the proof by induction, assume the

constraints are saturated at t− 1 and show the constraints must be also saturated at

t. This is because if the constraints are not saturated, then U t and/or V t are larger

than they could be, which translates to U t−1 and/or V t−1 also being larger than they

could be through the constraint, and down the line until U0 and V 0 are larger than

they code be, contradicting the previously established property for U0 and V 0.

Together all constraints imply that

Gx

(
ũt
)
≤ 0 and Hy

(
Φ−

(
U t
x + V t

y − βP⊤U t+1 − βQ⊤V t+1
)
− ũt

)
≤ 0.
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where we have solved for dt using the first three saturated constraints above and

plugged it into the last constraints. Let ut
xy = U t

x + ũt
xy and vt = −ut

xy + Φ +

β
(
P⊤U t+1 +Q⊤V t+1

)
then

Gx

(
ut − U t

x

)
≤ 0 and Hy

(
vt − V t

y

)
≤ 0,

which implies

Gx(u
t) ≤ U t

x and Hy

(
vt
)
≤ V t

y .

We will change the control variables to be something more interpretable. The dual

becomes
inf

Ut,V t
inf
ut,vt

∑
x∈X

m0
xU

0
x +

∑
y∈Y

n0
yV

0
y

s.t ut
xy + vtxy = Φxy + β

(
P⊤U t+1 +Q⊤V t+1

)
xy

ut
x0 = Φx0 + β

(
P⊤U t+1

)
x0

vt0y = Φ0y + β
(
Q⊤V t+1

)
0y

U t
x ≥ Gx(u

t)

V t
y ≥ Hy(v

t), t ≥ 0.

The last two inequality constraints are also saturated, for the same reason as above.

So the dual rewrites as

inf
ut,vt

∑
x∈X

m0
xGx(u

0) +
∑
y∈Y

n0
yHy(v

0)

s.t ut
xy + vtxy = Φxy + β

(
P⊤G(ut+1) +Q⊤H(vt+1)

)
xy

ut
x0 = Φx0 + β

(
P⊤G(ut+1

)
x0

vt0y = Φ0y + β
(
Q⊤H(vt+1)

)
0y
,

(S.2)

where G(ut+1) and H(vt+1) are the stacked vectors of (Gx(u
t+1))x and (Hy(v

t+1))y.

That concludes point (1), to derive the more computational attractive form of the

dual stated in the main text.

59



Now on point (2): write dual (S.2)’s Lagrangian

inf
ut,vt

∑
x∈X

m0
xGx(u

0) +
∑
y∈Y

n0
yHy(v

0)

+
∑
t

∑
xy

λt
xy

(
Φxy + β

(
P⊤G(ut+1) +Q⊤H(vt+1)

)
xy

− ut
xy − vtxy

)
+
∑
t

λt
x0

(
Φx0 + β

(
P⊤G(ut+1

)
x0

− ut
x0

)
+
∑
t

λt
0y

(
Φ0y + β

(
Q⊤H(vt+1)

)
0y
− vt0y

)
,

(S.3)

By implication of strong duality, we know that the Lagrange multipliers are the

solutions to the primal problem, so we can write that at the solution λt
xy = βtµt

xy,

where µ are the optimal match masses at t. Next, We can see that the first order

conditions (FOCs) to the dual’s Lagrangian are, for the initial period 0,

m0
x

∂Gx(u
0
xy)

∂u0
xy

= µ0
xy and n0

y

∂Hy(v
0
xy)

∂v0xy
= µ0

xy. (S.4)

For periods t ≥ 1, the FOCs become

∑
x̄ȳ

(
βt−1µt−1

x̄ȳ

(
βPx|x̄,ȳ

∂Gx(u
t
xy)

∂ut
xy

))
= βtµt

xy and
∑
x̄ȳ

(
βt−1µt−1

x̄ȳ

(
βQy|x̄,ȳ

∂Hy(v
t
xy)

∂vtxy

))
= βtµt

xy.

Consider the x-side FOC, on the left. The partial derivative
∂Gx(ut

xy)

∂ut
xy

is a multiplicative

constant that factors out of the left side of the FOC. The discount factor β cancels

on both sides, giving

∂Gx(u
t
xy)

∂ut
xy

∑
x̄ȳ

(
µt−1
x̄ȳ

(
Px|x̄,ȳ

))
= µt

xy and
∂Hy(v

t
xy)

∂vtxy

∑
x̄ȳ

(
µt−1
x̄ȳ

(
Qy|x̄,ȳ

))
= µt

xy.

For the x-side, the term
∑

x̄ȳ

(
µt−1
x̄ȳ

(
Px|x̄,ȳ

))
can be seen to equal mt

x, the mass of

workers of type x in period t. So the FOCs become

∂Gx(u
t
xy)

∂ut
xy

mt
x = µt

xy and
∂Hy(v

t
xy)

∂vtxy
nt
y = µt

xy. (S.5)
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By standard arguments in convex optimization, we can define ut and vt using G’s

and H’s Legendre transforms:

ut
xy =

∂G∗
x

(
µ
m

)
∂ µxy

mx

and vtxy =
∂H∗

y

(
µ
n

)
∂ µxy

ny

u and v are then solutions to the dual (S.2).

S.2.4 Theorem 4

Proof. This proof rests on the use of duality: we show that the dynamic competitive

equilibrium is equivalent to the social planner problem through its dual, in the same

fashion as Dupuy and Galichon (2014) and Galichon and Salanié (2022). Unlike

these papers however, our social planner problem has countably infinite controls and

constraints. Proposition 4 shows strong duality for our social planner primal and dual

problems. Also, we should point out again that our social planner problem is not a

linear program as in the model without econometric errors.

First we show that the direction that says solutions to the primal and dual prob-

lems yield a DCE. Given a solution (ut, vt)t to the dual (S.2), let the wages be given

as (15) in the statement of the theorem to be proved. Rearranging the wages in (15)

to solve for ut
xy and vtxy will give the same utilities as on the right sides of (9), up to

the error terms.

Let us consider the dual problem’s Lagrangian (S.3), as in the previous proof.

The dual Lagrangian’s FOCs (S.4) and (S.5) remain as in the previous proof. By

the Williams-Daly-Zachary Theorem, the partial derivatives in the FOCs equal the

choice probabilities

Pr

(
ỹ ∈ argmax

y∈Y0

ut
xy + ϵty

)
.

Using the proposal for equilibrium wages wt
xy in the statement of the theorem, we

can solve for ut
xy and substitute in for that term in the choice probability, giving

Pr

(
ỹ ∈ argmax

y∈Y0

(
αxy + wt

xy + ϵty + β
(
P⊤Gx(u

t+1)
)
xy

))
.

The term
(
P⊤Gx(u

t+1)
)
xy

involves an integral over ϵ’s and it can be expanded to
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match the notation in the formula in the definition of a DCE,

Pr

(
ỹ ∈ argmax

y∈Y0

αx̃y + wt
x̃y + ϵty + β

∑
x′∈X

Px′|x̃yE
[
U t+1
x′

(
w(t+1), ϵt+1

)])
.

Returning to the x-side in equation (S.4), we divide µ0
xy in the FOC bym0

x =
∑

y∈Y µ0
xy

and, after reversing the direction of the equation as written, we end up with

µ0
x̃ỹ∑

y∈Y0
µ0
x̃y

= Pr

(
ỹ ∈ argmax

y∈Y0

αx̃y + w0
x̃y + ϵ0y + β

∑
x′∈X

Px′|x̃yE
[
U1
x′

(
w(1), ϵ1

)])
,

as defined in the definition of a DCE, Definition 3. Therefore, we satisfy the

requirements for Definition 3 for matched agents in period 0. The argument for the

unmatched x-side agents and the y-side agents are quite parallel.

For periods t ≥ 1, applying the Williams-Daly-Zachary theorem indicates that

the partial derivatives are choice probabilities as in the definition of a DCE. For

the x-side in equation (S.5), diving by mt
x gives the choice probability equality in the

definition of a DCE. The arguments for unmatched x-side workers and all y-side firms

are parallel. So we have verified Definition 3 and we have a DCE.

The other direction of the theorem starts with a DCE (µ,w) and ends with µ

solving the primal problem and the ut
xy and vtxy calculated using the expressions for

the expected present discounted lifetime utilities solving the dual problem. All we

need to show is that ut
xy and vtxy solve the dual problem with the Lagrange multipliers

µt
xy, as by the strong duality Proposition 4 the primal problem will also be solved.

The argument that the dual FOCs are solved is almost immediate from prior

arguments, as we can simply multiply the probabilities in Definition 3 by the masses

of each agent type, mt
x or nt

y, and get the dual FOCs derived above. We do not need

to check second-order conditions by convexity. Therefore, the DCE yields a solution

to the dual and hence the primal.
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S.3 Methods for Equilibrium Computation

S.3.1 Constant Aggregate State Without Econometric Er-

rors

Computing the constant aggregate state and associated stationary equilibrium for

the model without econometric errors can be done by solving the following quadratic

problem:

min
µ≥0,U,V

∑
xy∈X0 Y0

µxy

(
Ux + Vy − Φxy − β

(∑
x′∈X

Ux′Px′|xy +
∑
y′∈Y

Vy′Qy′|xy

))
s.t

∑
y∈Y0

µxy =
∑

x′,y′∈X Y0

Px|x′y′µx′y′ ∀x ∈ X∑
x∈X0

µxy =
∑

x′,y′∈X0 Y

Qy|x′y′µx′y′ ∀y ∈ Y

Ux + Vy ≥ Φxy + β

(∑
x′∈X

Ux′Px′|xy +
∑
y′∈Y

Vy′Qy′|xy

)
∀x ∈ X , y ∈ Y

Ux ≥ β
∑
x′∈X

Ux′Px′|x0 ∀x ∈ X

Vy ≥ β
∑
y′∈Y

Vy′Qy′|0y ∀y ∈ Y .

(S.6)

The formulation as a quadratic problem ensures that the complementary slackness

condition in Definition 1 is enforced. The constraints yield a constant aggregate

state. Solving this quadratic problem is relatively straightforward, using a package

such as Gurobi. We show that the optimal µ obtained in (S.6) is part of a stationary

equilibrium in the following proposition.

Proposition S.6. The solution µ to problem (S.6) is part of a stationary equilib-

rium. The resulting aggregate state (m,n) =
(∑

y∈Y0
µxy,

∑
x∈X0

µxy

)
is a constant

aggregate state.

Proof. Let (µ, U, V ) solve problem (S.6). Then the tuple (µ, U, V ) satisfies the primal

feasibility, dual feasibility, and complementary slack conditions for the social planner
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problem at (m,n) =
(∑

y∈Y0
µxy,

∑
x∈X0

µxy

)
. It is straightforward that

(m,n) =

( ∑
x′,y′∈X Y0

Px|x′y′µx′y′ ,
∑

x′,y′∈X0 Y

Qy|x′y′µx′y′

)

and therefore (m,n) is a constant aggregate state.

S.4 Structural Estimation

It is easy to transition from computing a constant aggregate state and its associated

stationary equilibrium to estimating the model parameters, if one assumes that the

data come from a constant aggregate state. The minimal data set comes from one

market in stationary equilibrium and has cross-sectional data on x, y, x′, y′ for a ran-

dom sample of matches (x, y) from that market, where x′, y′ are the states of the two

matched agents at the beginning of the next period. Data sets with longer panels can

also be used, as we illustrate in our empirical application to the careers of Swedish

engineers in Section 5.

We use the data on matches (x, y) to calculate the observed matching probabilities

µ̂xy, as well as µ̂x0 and µ̂0y for unemployed workers and vacant jobs, respectively.

Throughout this section, we assume that µ̂ is a stationary equilibrium.

The structural parameters are α, γ, P, Q and β. In estimation, we assume that

the transition rules for the individual worker and firm states P and Q are estimated

in a first stage, as is often done in dynamic discrete choice models (e.g., Rust, 1987).

We focus on a second stage in which structural parameters are estimated. Based

on identification results for static matching games, starting with the theoretical char-

acterizations of Becker (1973) and the logit model of Choo and Siow (2006), we

estimate parameters in Φ = α+ γ, the match production function, defined to be the

sum of the worker amenities and the firm output for a given match. We parameterize

match production Φ by

Φxy(λ) =
L∑
l=1

λlϕl
xy,

where each ϕl is a basis function of types x and y, and λ = (λl)1≤l≤L are the parameters

we estimate. We fix the discount factor β, as is common in single-agent dynamic

discrete choice models such as Rust (1987).
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S.4.1 MPEC for Estimation

To estimate the model on cross-sectional data x, y, x′, y′, assuming that the observed

equilibrium is stationary, one simply needs to augment the primitives (m,n, U, V )

with parameters λ, and maximize a log-likelihood function on matching µ under the

feasibility and stationarity constraints from (16). The log likelihood is

l(λ, U, V,m, n) =
∑

xy∈X Y

µ̂xy log µxy (λ, U, V, U, V,m, n)− N̂ logN (λ, U, V, U, V,m, n) .

N (λ, U, V,m, n) counts the total mass of matches and unmatched agents on the

market:

N (λ, U, V,m, n) =
∑

xy∈X Y

µxy (λ, U, V, U, V,m, n)

+
∑
x∈X

µx0 (λ, U, V, U, V,m, n) +
∑
y∈Y

µ0y (λ, U, V, U, V,m, n)

and N̂ is its observed equivalent. The product N̂ logN converts counts from µ̂

and µ to probabilities required in the likelihood function. Maximum likelihood is

statistically efficient except for the first-stage estimation of the transition rule P and

Q. Full efficiency can be gained by simultaneously estimating λ, P and Q using

maximum likelihood.

S.4.2 Primal-Dual Algorithm for Estimation

To adapt the primal-dual algorithm for estimation, we augment the set of primitives

with the structural parameters λ and replace function Z by Zest:

Zest(λ, U, V, U
′, V ′,m, n, β) =Z(λ, U, V, U ′, V ′,m, n, β)

−
∑

xy∈X Y

µ̂xyΦxy(λ).
(S.7)

When β = 1 we solve an augmented version of the min-max problem (17):

min
U,V,λ

max
m,n

Zest(λ, U, V, U, V,m, n, 1).
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The difference between Z and Zest resides in the additional term−
∑

xy∈X Y µ̂xyΦxy(λ).

This term produces the following moment conditions when computing the first order

conditions with respect to λ for problem (S.7):∑
xy∈X Y

µ̂xyϕ
l
xy(λ) =

∑
xy∈X Y

µxy(λ, U, V, U, V,m, n, β)ϕl
xy(λ) ∀l = 1, . . . , L.

When β < 1, we use the Chambolle-Pock algorithm applied to Zest to converge to the

feasibility, stationarity and moment conditions. Choose an increment τ , a threshold

δ, and initial values (λ0, U0, V 0,m0, n0) and (m1, n1). Iterate on k according to:

Intermediary (m̃, ñ)

{
m̃k

x = 2mk
x −mk−1

x ∀x ∈ X
ñk
y = 2nk

y − nk−1
y ∀y ∈ Y

(λ, U, V ) update


λl,k+1 = λl,k − τ

(
∂λlZk

est

)
∀l = 1, . . . , L

Uk+1
x = Uk

x − τ
(
∂UxZ

k
est + β−1∂U ′

x
Zk
)

∀x ∈ X
V k+1
y = V k

y − τ
(
∂VyZ

k
est + β−1∂V ′

y
Zk
)

∀y ∈ Y

(m,n) update

{
mk+1

x = mk
x + τ∂mxZ

k+1
est ∀x ∈ X

nk+1
y = nk

y + τ∂nyZ
k+1
est ∀y ∈ Y ,

(S.8)

where {
Zk

est = Z(λk, Uk, V k, Uk, V k, m̃k, ñk, β)

Zk+1
est = Z(λk+1, Uk+1, V k+1, Uk+1, V k+1,mk, nk, β).

The stopping criteria is

max
(∣∣λk+1 − λk

∣∣ , ∣∣Uk+1 − Uk
∣∣ , ∣∣V k+1 − V k

∣∣ , ∣∣mk+1 −mk
∣∣ , ∣∣nk+1 − nk

∣∣) < δ.

S.4.3 Estimation Method Comparison

As we do for equilibrium computation, we compare the MPEC and primal-dual meth-

ods in structural estimation in Table S.1. We vary the number of types on each side

of the market, as well as the number of parameters to estimate. MPEC proves once

again faster than the primal-dual method in markets with low numbers of types and

parameters to estimate, L, and is slower when markets have a large number of types

and the model has a large number of parameters to estimate.
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Table S.1: MPEC and Primal-Dual Performance - Structural Estimation

#X ×#Y ×L 2× 2× 2 10× 10× 10 30× 30× 30 100× 100×
100

MPEC

Min iter. nb. 4 6 8 9
Max iter. nb. 46 7 12 12
Mean time elapsed .0028 .0342 2.494 161.8

Primal-Dual

Min iter. nb. 6033 3329 3528 7980
Max iter. nb. 19443 5286 4072 8315
Mean time elapsed .0347 .0791 1.391 94.09

Notes: Program ran in Julia on a Macbook Pro with a M2 chip, 16GB of RAM, and 8 cores. The
nonlinear solver for MPEC is KNITRO. Statistics computed on 10 replications. The convergence
tolerance is 10e-6.

S.5 Data for Empirical Application

Our data is collected by the Swedish Employer’s Federation (SAF in Swedish). The

sample period is 1970–1990. Observations in the panel are at an individual times

year level. Workers and firms have a unique identifier. The data contains a number

of characteristics on both workers and firms, among which worker’s age and job

occupation. We do not consider observations that report less than 35 hours worked

per week, nor workers below 25 years old. This is because becoming an engineer

in Sweden requires at least five years of studying, and as all Swedish males must

complete their military service, observations below 25 years old are scarce in the

data. The worker population is mostly male (only 9.1% of engineers are women). We

use the entire panel to estimate transitions and the stationary matching, as described

in the main text.

We use information on occupation at the 1-digit level, and classify these occu-

pations into two types: Technical and General. The Technical occupation are: Re-

search and Development, Construction and Design, Technical Methodology, Planning,

Control, Service and Industrial Preventive Health Care). The General occupations

are: Administrative Work, Production Management, Communication, Library and

Archival Work, Personnel Work, General Services, Business and Trade, Financial

67



Work and Office Services. Between 1975 and 1990, 64% of observations are technical

occupation matches.

Figure S.1 shows the potential experience distribution across workers from 1975 to

1990. Most workers in the dataset have between 1 and 5 years of potential experience.

Figure S.1: xe’s distribution, 1975-1990

Authors’ calculations from SAF data.

The share of a worker’s time spent in a technical occupation in the past 5 years x̃

is measured starting in 1975 from the years 1970 to 1974, and over a sliding window

for the years after 1975. Since the data is a panel, one simply counts the number of

observations employed in a technical occupation by individual worker, and takes the

ratio over the number of all observations in the past five years. Figure S.2 shows the

distribution of this share across all workers between 1975 and 1990. Overall, 34.9%

of observations are workers with no technical experience, 55% are workers with only

technical experience, and 10.1% are workers with some level of technical experience.

68



Figure S.2: x̃’s distribution, 1975-1990

Authors’ calculations from SAF data.
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