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Introduction

Dynamic aspects are crucial for matching games

• In labor economics

• In family economics

• In mergers and acquisitions

• In school choice

In all these contexts, matching today affects agents state variables and therefore future

matching prospects:

• Labor: human capital acquisition

• Marriage: fertility, moving and career decisions
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Motivation

We develop a framework for these dynamic matching problems

• With and without unobserved heterogeneity

• With finite or infinite (stationary) horizon

• With equilibrium prediction, structural estimation and comparative statics

In which agents are forward looking and account for how matches today affect future matches
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Dynamic Matching

Our model generalizes static matching à la Choo and Siow (2006) using state variable

transition in the spirit of Rust (1987)

• One-to-one matching, transferable utility

• Solution concept: competitive equilibrium

• Matching market clears each period

• Matching affects evolution of agents’ state variable

• Agents maximize present value of profits

• No information asymmetry

• No friction unless explicitly modelled
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• Static, one-to-one, transferable utility models: Choo and Siow (2006), Fox et al. (2018),
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Baseline Model



Workers & Firms

Infinte horizon model: time subscript are dropped

• Continuum of workers of type x ∈ X (also called state variable)

• Finite number of types. Each type is possibly multidimensional

• Total mass of workers N

• Similarly for firms: y ∈ Y, total mass M

• Options available to type x worker: Y0 = Y ∪ {0}
• Options available to type y firm: X0 = X ∪ {0}
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Type Transitions

Types evolve as function of current match (x , y)

• Px′|xy = P(x ′|x , y): transition mass function for worker state if worker x matches with

firm y

• Qy ′|xy = Q(y ′|x , y) transition mass function for firm state if firm y matches with worker x

•
∑

x′ Px′|xy =
∑

y ′ Qy ′|xy = 1 (for now)

• Transitions are deterministic if Px′|xy and Qy ′|xy are 0 or 1.
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Matches and Transfers

• µxy : mass of matches between types x , y

• µx0, µ0y masses of unmatched x and y

• wxy : monetary transfer paid by y tp x

• Flow profit of worker x matched to y :

αxy + wxy

• Flow profit of firm y matched to x :

γxy − wxy

• Flow profit of unmatched firms and workers: αx0 and γy0
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Bellman Equations

Constant aggregate state at beginning of period: n,m

→ w , µ are functions of n,m.

Transition to next period aggregate state:∑
x,y

Px′|xyµxy = m′x′ and
∑
x,y

Qy ′|xyµxy = n′y ′

Worker’s Bellman equation:

Ux(m, n) = max
y∈Y0

{
αxy + wxy (m, n) + β

∑
x′∈X

Px′|xyUx′(Pµ,Qµ)

}
Fims Bellman equation:

Vy (m, n) = max
x∈X0

γxy − wxy (m, n) + β
∑
y ′∈Y

Qy ′|xyVy ′(Pµ,Qµ)


U and V are worker’s and firm’s lifetime utilities
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Competitive Equilibrium

A competitive equilibrium is a pair µ, w such that if µxy > 0

y ∈ arg max
ỹ∈Y0

{
αxỹ + wxỹ (m, n) + β

∑
x′∈X

Px′|xỹUx′ (Pµ,Qµ)

}

x ∈ arg max
x̃∈X0

γx̃y − wx̃y (m, n) + β
∑
y ′∈Y

Qy ′|x̃yVy ′ (Pµ,Qµ)


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Primal Problem

Define total match surplus

Φxy = αxy + γxy

Theorem

The matching policy µ maximizes the social planner’s Bellman

W (m, n) = max
µxy≥0

 ∑
xy∈X0Y0

µxyΦxy + βW (Pµ,Qµ)


subject to the constraints

∑
y∈Y0

µxy = mx and
∑

x∈X0
µxy = ny

Consequence: A competitive equilibrium exists and the economy sum of profits W (m, n) is

uniquely determined
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Dual Problem

Make use of linear duality theory to directly compute lifetime utilities U and V

D (m, n) = min
U,V

∑
x∈X

mxUX (m, n) +
∑
y∈Y

nyVy (m, n) + βD (Pµ,Qµ)


Subject to constraints

Ux (m, n) + Vy (m, n) ≥

Φxy+β
∑
x′∈X

Px′|xyUx′ (Pµ,Qµ) + β
∑
y ′∈Y

Qy ′|xyVy ′ (Pµ,Qµ)

Then recover equilibrium transfers w(m, n)
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Unobserved Heterogeneity



Econometric Unobservables

In data, agents of same x match with many different y ’s → introduce econometric errors.

Worker i ’s flow profit:

αxy + wxy + εiy

Firm j ’s flow profit:

γxy + wxy − ηjx

Assumption

• (εiy ) and (ηjx) are independent over time, as in Rust (1987)

• (εiy ) and (εi ′y ), (ηjx) and (ηj′x), (εiy ) and (ηjx) are iid

• (εiy ) and (ηjx) are distributed as extreme value 1, as in Choo and Siow (2006)
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Regularized Primal Problem

Social planner Bellman equation now writes

W (m, n) = max
µxy

 ∑
xy∈X0Y0

µxyΦxy − E (µ;m, n) + βW (Pµ,Qµ)


Where E (µ;m, n) is the entropy. Under Gumbel shocks, it writes

E (µ;m, n) =
∑
xy

µxy logµxy +
∑
x

nx log nx +
∑
y

my logmy
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Regularized Dual Problem

D (m, n) = min
U,V

∑
x∈X

mxUX (m, n) +
∑
y∈Y

nyVy (m, n)

+
∑
x,y

nxmy exp

Φxy − Ux(m, n)− Vy (m, n) + β
∑
x′

Px′|xyUx′ (Pµ,Qµ) + β
∑
y ′

Qy ′|xyVy ′ (Pµ,Qµ)


+ βD (Pµ,Qµ)

Equilibrium matching is

µxy (m, n) = exp
(

Φxy − Ux(m, n)− Vy (m, n)

+ β
∑
x′

Px′|xyUx′ (Pµ,Qµ) + β
∑
y ′

Qy ′|xyVy ′ (Pµ,Qµ)
)
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Stationary Equilibrium



Constant Aggregate State

Constant aggregate state is n,m that satisfy for a given equilibrium

m = Pµ(m, n) and n = Qµ(m, n) (1)

i.e. (m,m) remains next period’s state if current state is (m, n). Competitive µ is then called

the stationary equilibrium

Theorem

For every M,N > 0, a constant aggregate state exists such that
∑

x mx = M and
∑

y ny = N

Proof shows goes through showing that (1) defines a contraction for (m, n) under logit shocks

assumption (using Brouwer theorem)
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Computing the Stationary Equilibrium

We could compute the entire equilibrium for all aggregate states and then search for constant

aggregate state, but instead we develop two much faster methods:

• Mathematical Programming with Equilibrium Constraints (Su and Judd (2012)).

- Easy to implement

- Very fast with small number of types

• Rewrite the steady state conditions as an optimization problem and apply Chambolle-Pock

algorithm (Chambolle and Pock (2010))

- Can deal with large numbers of types
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MPEC

Rewrite steady state as system of equations on n,m,U,V :∑
x

µxy = mx and
∑
y

µxy = ny∑
xy

Px′|xyµxy = mx and
∑
xy

Qy ′|xyµxy = ny

µxy = nxmy exp

Φxy − Ux − Vy + β
∑
x′

Px′|xyUx′ + β
∑
y ′

Qy ′|xyVy ′


In practise: define the problem in JuMP (a Julia package), and solve using IPOPT
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Steady State as an Optimization Problem

Define the following:

Z (m, n,U,V ,U ′,V ′, β) =
∑
xy

exp

Φxy − Ux − Vy + β
∑
x′

Px′|xyU
′
x′ + β

∑
y ′

Qy ′|xyV
′
y ′


−
∑
x

mx −
∑
y

ny

Assume β = 1, and set F (m, n,U,V ) = Z (m, n,U,V ,U,V ), then the following optimization

problem

min
U,V

max
m,n

F (m, n,U,V , 1)

has first order conditions

In m, n:
∑
x

µxy = mx and
∑
y

µxy = ny

In U,V :
∑
xy

Px′|xyµxy −
∑
x

µxy = 0 and
∑
xy

Qy ′|xyµxy −
∑
y

µxy = 0
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Chambolle-Pock

Chambolle and Pock (2010) for min max problems: choose a step ε and do:

m̃t = 2mt −mt−1, ñt = 2nt − nt−1

U t+1 = U t − ε∂UF (m̃t , m̃t ,U t ,V t)

V t+1 = V t − ε∂VF (m̃t , m̃t ,U t ,V t)

mt+1 = mt + ε∂mF (mt , nt ,U t+1,V t+1)

nt+1 = nt + ε∂nF (mt , nt ,U t+1,V t+1)

Then the algorithm converges to a solution to minU,V maxm,n F (m, n,U,V , 1)
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β < 1

If β < 1, constant aggregate state does not rewrite as an optimization problem because then

∂UF = β
∑
xy

Px′|xyµxy −
∑
x

µxy and ∂VF = β
∑
xy

Qy ′|xyµxy −
∑
y

µxy

But if we run the analog to Chambolle-Pock it still converges !

m̃t = 2mt −mt−1, ñt = 2nt − nt−1

U t+1 = U t − ε (β∂UZ (m̃t , m̃t ,U t ,V t ,U t ,V t) + ∂U′Z (m̃t , m̃t ,U t ,V t ,U t ,V t))

V t+1 = V t − ε (β∂VZ (m̃t , m̃t ,U t ,V t ,U t ,V t) + ∂V ′Z (m̃t , m̃t ,U t ,V t ,U t ,V t))

mt+1 = mt + ε∂mZ (m̃t , m̃t ,U t ,V t ,U t ,V t)

nt+1 = nt + ε∂nZ (m̃t , m̃t ,U t ,V t ,U t ,V t)
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Extensions

• All results and methods go through with unmatched agents

• Add an incoming flow of agents, as well as retiring agents (P and Q non stochastic)

• Add normalization variable to both MPEC and Chambolle-Pock to match total masses N

and M
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Estimation



Strategy

• Assume data comes from constant aggregate state

• Observations on (x,x’,y,y’): worker and firm state in current and next period, matching in

current period µ̃

• we want to estimate transition matrices P and Q as well as parameters λ that parametrize

total surplus Φλ, where Φλ
xy =

∑
k φ

k
xyλ

k

• As in Rust (1987), transition matrices can be estimated in first stage, by counting number

of agents who transition from x to x ′ and fro y to y ′

• Both MPEC and Chambolle-Pock can be adapted to estimation of λ
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Estimation with MPEC

Sample log likleihood is ∑
xy

µ̃xy logµxy (λ)

Or if we observe singles:

2
∑
xy

µ̃xy logµxy (λ) +
∑
x0

µ̃x0 logµx0(λ) +
∑
0y

µ̃0y logµ0y (λ)

We simply need to maximize the log likelihood, subject to MPEC constraint
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Estimation with Chambolle-Pock

Modify Z to include λ

Z (m, n,U,V ,U ′,V ′, λ, β) =
∑
xy

exp

Φλ
xy − Ux − Vy + β

∑
x′

Px′|xyU
′
x′ + β

∑
y ′

Qy ′|xyV
′
y ′


−
∑
x

mx −
∑
y

ny −
∑
xy

µ̃xyΦλ
xy

Then ∂λF = 0 is a moment matching condition
∑

x,y µxyφ
k
xy =

∑
x,y µ̃xyφ

k
xy

The same intuitions as before are valid for optimization:

min
U,V ,λ

max
m,n

H(m, n,U,V , λ, β)
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Method Comparison

Table 1: Speed comparison (in seconds) - Equilibrium computation

3 types 10 types 30 types

Chambolle-Pock .15 2.62 160.61

MPEC .02 1.03 -

Table 2: Speed comparison (in seconds) - Estimation

2 parameters 10 parameters

Chambolle-Pock 3.03 76.70

MPEC 1.36 3.92

10 types
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Application: Geographic Mobility of Swedish Engineers

We use this framework to estimate location switching cost by age group for Swedish engineers

from 1970-1990 (Fox (2010)). Parametrization is the following:

x = {previous location, age group} and y = {location}

With 5 age groups and 4 locations. Surplus is

Φλ
xy =

5∑
k=1

λk1[xage=k]distxy

Where distxy is the distance in kilometers between x ’s region and y ’s region’
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Transition Matrices Estimates

We assume a 10% probability of aging, i.e going from age group k to age group k + 1, and

compute attrition rates for workers and firms directly from the data. Transition matrices are

then estimated as:

Px′|xy =


(1− ρ)δx µ̃xy if xage = x ′age and yloc = x ′loc
ρδx µ̃xy if xage + 1 = x ′age and yloc = x ′loc
0 otherwise

Qy ′|xy =

{
δy µ̃xy if yloc = y ′loc
0 otherwise

Choose β = .95
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Parameters Estimate

Table 3: Estimates for moving cost by age bin

λ1 λ2 λ3 λ4 λ5

Chambolle-Pock -51.81 -49.86 -49.10 -47.28 -52.97

MPEC -48.42 -48.88 -51.22 -48.31 -50.32

In euros/kilometers
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Conclusion

We introduce a concept of repeated matching games:

• All agents match in each period

• Market clears every period

• Agents’ type evolve according to current match

• Steady state exists for any given total masses of agents

Still on the agenda:

• Identification issues a la Kalouptsidi et al. (2021), Kalouptsidi et al. (2019)

• Theoretical convergence of Chambolle-Pock when β < 1

• Conditions for uniqueness of steady state

• Computation of standard errors
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